Skip to main content

2024 | OriginalPaper | Buchkapitel

Alkali-Activated Slag Concrete After 5 Years of Alkali-Silica Reaction

verfasst von : Lucas Herzog Bromerchenkel, Alireza Dehghan Najmabadi, Karl Peterson

Erschienen in: Proceedings of the 17th International Conference on Alkali-Aggregate Reaction in Concrete

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cement is one of the most widely adopted building materials in the world, due to versatility, efficiency, and cost. Cement production, however, is a big contributor to \(CO_{2}\) emissions worldwide.
Alternatives are available, based on recycled building materials, industrial by-products, natural minerals, among others, but these are not always as cost-effective and durable as Portland Cement. The processes responsible for the long-term degradation of concrete, made from Portland Cement or otherwise, include corrosion, carbonation, binder-aggregate reactions, sulfate attack among others.
This work assesses the long-term durability of alkali-activated alternative binders, namely slag, as compared to regular Portland Cement in concrete under Alkali-silica reaction conditions.
Six mix designs were chosen for this study, two using Portland Cement as the binder, and four with slag as the alkali-activated precursor. Out of the four slag mix designs, two used slags from a Canadian source as the primary binders, and two used slag from an European source. Concrete samples were kept at 38 ℃ and 100% RH for 5 years. The performance was investigated by length measurements, microscopic investigations, and chemical analyses using SEM-EDS equipment.
It was found that ASR gel chemistry may change over time, both for OPC and Alkali-activated Slag concrete.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Pacheco-Torgal, F., Labrincha, J.A., Leonelli, A., Palomo, A., Chindaprasirt, P.: Handbook of Alkali-Activated Cements. Elsevier, Mortars and Concretes (2015) Pacheco-Torgal, F., Labrincha, J.A., Leonelli, A., Palomo, A., Chindaprasirt, P.: Handbook of Alkali-Activated Cements. Elsevier, Mortars and Concretes (2015)
Zurück zum Zitat Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-activated cements and concretes. Taylor & Francis (2006)CrossRef Shi, C., Krivenko, P.V., Roy, D.M.: Alkali-activated cements and concretes. Taylor & Francis (2006)CrossRef
Zurück zum Zitat Atabey, I.I., Karahan, O., Bilim, C., Ati, S.C.D.: The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Constr. Build. Mater. 264, 120268 (2020) Atabey, I.I., Karahan, O., Bilim, C., Ati, S.C.D.: The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Constr. Build. Mater. 264, 120268 (2020)
Zurück zum Zitat Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996)CrossRef Shi, C.: Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26(12), 1789–1799 (1996)CrossRef
Zurück zum Zitat Lei, J., Law, W.W., Yang, E.-H.: Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Constr. Build. Mater. 272, 121868 (2021)CrossRef Lei, J., Law, W.W., Yang, E.-H.: Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Constr. Build. Mater. 272, 121868 (2021)CrossRef
Zurück zum Zitat Al-Otaibi, S.: Durability of concrete incorporating GGBS activated by waterglass. Constr. Build. Mater. 22(10), 2059–2067 (2008)CrossRef Al-Otaibi, S.: Durability of concrete incorporating GGBS activated by waterglass. Constr. Build. Mater. 22(10), 2059–2067 (2008)CrossRef
Zurück zum Zitat Rajmohan, B., Nayaka, R.R., Rajesh Kumar, K., Kaleemuddin, K.: Mechanical and durability performance evaluation of heat cured low calcium fly-ash based sustainable geopolymer concrete. Mater. Today Proc. 58, 1337–1343 (2022)CrossRef Rajmohan, B., Nayaka, R.R., Rajesh Kumar, K., Kaleemuddin, K.: Mechanical and durability performance evaluation of heat cured low calcium fly-ash based sustainable geopolymer concrete. Mater. Today Proc. 58, 1337–1343 (2022)CrossRef
Zurück zum Zitat Wang, S.-D.: Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43(154), 29–35 (1991)CrossRef Wang, S.-D.: Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43(154), 29–35 (1991)CrossRef
Zurück zum Zitat Swamy, R.N.: Alkali-Silica Reaction in Concrete (1992) Swamy, R.N.: Alkali-Silica Reaction in Concrete (1992)
Zurück zum Zitat Wang, S.-D., Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)CrossRef Wang, S.-D., Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995)CrossRef
Zurück zum Zitat Wang, S.-D., Scrivener, K.L.: 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33(5), 769–774 (2003)CrossRef Wang, S.-D., Scrivener, K.L.: 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33(5), 769–774 (2003)CrossRef
Zurück zum Zitat Puertas, F., Martıinez-Ramıirez, S., Alonso, S., Vázquez, T.: Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cem. Concr. Res. 30(10), 1625–1632 (2000)CrossRef Puertas, F., Martıinez-Ramıirez, S., Alonso, S., Vázquez, T.: Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cem. Concr. Res. 30(10), 1625–1632 (2000)CrossRef
Zurück zum Zitat Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003)CrossRef Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003)CrossRef
Zurück zum Zitat Farny, J.A., Kerkhoff, B.: Diagnosis and control of alkali-aggregate reactions in concrete. Portland Cement Association (2007) Farny, J.A., Kerkhoff, B.: Diagnosis and control of alkali-aggregate reactions in concrete. Portland Cement Association (2007)
Zurück zum Zitat Hobbs, D.W.: Alkali-silica reaction in concrete. Thomas Telford Publishing (1988) Hobbs, D.W.: Alkali-silica reaction in concrete. Thomas Telford Publishing (1988)
Zurück zum Zitat Bakharev, T., Sanjayan, J.G., Cheng, Y.: Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 31(9), 1277–1283 (2001)CrossRef Bakharev, T., Sanjayan, J.G., Cheng, Y.: Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 31(9), 1277–1283 (2001)CrossRef
Zurück zum Zitat Gifford, P., Gillott, J.: Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem. Concr. Res. 26(1), 21–26 (1996)CrossRef Gifford, P., Gillott, J.: Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem. Concr. Res. 26(1), 21–26 (1996)CrossRef
Zurück zum Zitat You-zhi, C., Xin-cheng, P., Chang-hui, Y., Qing-jun, D.: Alkali aggregate reaction in alkali slag cement mortars. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 17(3), 60–62 (2002) You-zhi, C., Xin-cheng, P., Chang-hui, Y., Qing-jun, D.: Alkali aggregate reaction in alkali slag cement mortars. J. Wuhan Univ. Technol. -Mater. Sci. Ed. 17(3), 60–62 (2002)
Zurück zum Zitat Dehghan Najmabadi, A.: Durability testing protocols for concrete made with alternative binders and recycled materials. Canada (2018) Dehghan Najmabadi, A.: Durability testing protocols for concrete made with alternative binders and recycled materials. Canada (2018)
Zurück zum Zitat Winnefeld, F., et al.: RILEM TC 247-DTA round robin test: Sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Mater. Struct. 53(6), 140 (2020)CrossRef Winnefeld, F., et al.: RILEM TC 247-DTA round robin test: Sulfate resistance, alkali-silica reaction and freeze–thaw resistance of alkali-activated concretes. Mater. Struct. 53(6), 140 (2020)CrossRef
Zurück zum Zitat Hanson, K.F., Van Dam, T.J., Peterson, K.R., Sutter, L.L.: Effect of sample preparation on chemical composition and morphology of alkali–silica reaction products. In: Transportation Research Record: Journal of the Transportation Research Board, vol. 1834, Issue 1, pp. 1–7. SAGE Publications (2003). https://doi.org/10.3141/1834-01 Hanson, K.F., Van Dam, T.J., Peterson, K.R., Sutter, L.L.: Effect of sample preparation on chemical composition and morphology of alkali–silica reaction products. In: Transportation Research Record: Journal of the Transportation Research Board, vol. 1834, Issue 1, pp. 1–7. SAGE Publications (2003). https://​doi.​org/​10.​3141/​1834-01
Zurück zum Zitat Neville, A.M., Brooks, J.J.: Concrete Technology (2. ed). Prentice Hall (2010) Neville, A.M., Brooks, J.J.: Concrete Technology (2. ed). Prentice Hall (2010)
Zurück zum Zitat Cartwright, C., Rajabipour, F., RadliÅLnska, A.: Shrinkage characteristics of alkali-activated slag cements. J. Mater. Civ. Eng. 27(7), B4014007 (2015)CrossRef Cartwright, C., Rajabipour, F., RadliÅLnska, A.: Shrinkage characteristics of alkali-activated slag cements. J. Mater. Civ. Eng. 27(7), B4014007 (2015)CrossRef
Metadaten
Titel
Alkali-Activated Slag Concrete After 5 Years of Alkali-Silica Reaction
verfasst von
Lucas Herzog Bromerchenkel
Alireza Dehghan Najmabadi
Karl Peterson
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59349-9_67