Skip to main content

2024 | OriginalPaper | Buchkapitel

7. Laser-Supported Detonation

verfasst von : Hiroshi Katsurayama, Kohei Matsui

Erschienen in: Beamed-mobility Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter takes a comprehensive look at laser-supported detonation (LSD), examining both experimental studies and numerical analyses. It investigates the propagation mechanism, the atmospheric pressure dependence, and the role of an electron density threshold in driving the LSD. It clarifies the influence of laser intensity, wavelength, focusing optics, and ambient gas conditions on LSD propagation, highlighting the importance of further investigations to elucidate its propagation structure. It also discusses the energy conversion efficiency, termination conditions, and the propagation velocity of the LSD wave.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Boiko VA, Danilychev VA, Zvorykin VD et al (1976) Investigation of gasdynamic processes and recoil impulse produced by optical breakdown of air near a target surface by radiation of an electorn-beam-controlled CO2 laser. Sov J Quantum Electron 6:1065CrossRef Boiko VA, Danilychev VA, Zvorykin VD et al (1976) Investigation of gasdynamic processes and recoil impulse produced by optical breakdown of air near a target surface by radiation of an electorn-beam-controlled CO2 laser. Sov J Quantum Electron 6:1065CrossRef
Zurück zum Zitat Boiko VA, Danilychev VA, Duvanov BN et al (1978) Observation of supersonic radiation waves in gases generated by CO2 laser. Sov J Quantum Electron 8:134CrossRef Boiko VA, Danilychev VA, Duvanov BN et al (1978) Observation of supersonic radiation waves in gases generated by CO2 laser. Sov J Quantum Electron 8:134CrossRef
Zurück zum Zitat Bournot P, Pincosy PA, Inglesakis G et al (1979) Propagation of a laser-supported detonation wave. Acta Astronaut 6:257–267CrossRef Bournot P, Pincosy PA, Inglesakis G et al (1979) Propagation of a laser-supported detonation wave. Acta Astronaut 6:257–267CrossRef
Zurück zum Zitat Bufetov IA (1984) Optical discharge accompanying a restriction imposed on lateral expansion of gas and a reduction in the threshold of light-induced detonation. Sov J Exp Theor Phys Lett 39:258–261 Bufetov IA (1984) Optical discharge accompanying a restriction imposed on lateral expansion of gas and a reduction in the threshold of light-induced detonation. Sov J Exp Theor Phys Lett 39:258–261
Zurück zum Zitat Ilyin AA, Bukin OA, Bulanov AV (2008) Regimes of laser plasma expansion at optical breakdown in the normal atmosphere. Tech Phys 53:693–696CrossRef Ilyin AA, Bukin OA, Bulanov AV (2008) Regimes of laser plasma expansion at optical breakdown in the normal atmosphere. Tech Phys 53:693–696CrossRef
Zurück zum Zitat Katsurayama H, Abe T (2013a) Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel. J Appl Phys 113:053304CrossRef Katsurayama H, Abe T (2013a) Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel. J Appl Phys 113:053304CrossRef
Zurück zum Zitat Katsurayama H, Abe T (2013b) Numerical prediction of a critical altitude on electrodynamic aerobraking in a hypersonic continuum-rarefied transitional regime. AIAA Paper 2013-3003 Katsurayama H, Abe T (2013b) Numerical prediction of a critical altitude on electrodynamic aerobraking in a hypersonic continuum-rarefied transitional regime. AIAA Paper 2013-3003
Zurück zum Zitat Katsurayama H, Komurasaki K, Arakawa Y (2009) A preliminary study of pulse-laser powered orbital launcher. Acta Astronaut 65:1032–1041CrossRef Katsurayama H, Komurasaki K, Arakawa Y (2009) A preliminary study of pulse-laser powered orbital launcher. Acta Astronaut 65:1032–1041CrossRef
Zurück zum Zitat Kemp H, Lewis P (1980) Laser-heated thruster interim report. NASA CR-161665 Kemp H, Lewis P (1980) Laser-heated thruster interim report. NASA CR-161665
Zurück zum Zitat Maher WE, Hall RB, Johnson RR (1974) Experimental study of igition and propagation of laser-supported detonation waves. J Appl Phys 45:2138–2145CrossRef Maher WE, Hall RB, Johnson RR (1974) Experimental study of igition and propagation of laser-supported detonation waves. J Appl Phys 45:2138–2145CrossRef
Zurück zum Zitat Matsui K, Shimano T, Ofosu JA et al (2017) Accurate propagation velocity measurement of laser supported detonation waves. Vacuum 136:171–176CrossRef Matsui K, Shimano T, Ofosu JA et al (2017) Accurate propagation velocity measurement of laser supported detonation waves. Vacuum 136:171–176CrossRef
Zurück zum Zitat Mori K, Komurasaki K, Arakawa Y (2002) Influence of the focusing F number on the heating regime transition in laser absorption waves. J Appl Phys 92:5663–5667CrossRef Mori K, Komurasaki K, Arakawa Y (2002) Influence of the focusing F number on the heating regime transition in laser absorption waves. J Appl Phys 92:5663–5667CrossRef
Zurück zum Zitat Mori K, Komurasaki K, Arakawa Y (2004) Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. J Appl Phys 95:5979–5983CrossRef Mori K, Komurasaki K, Arakawa Y (2004) Energy transfer from a laser pulse to a blast wave in reduced-pressure air atmospheres. J Appl Phys 95:5979–5983CrossRef
Zurück zum Zitat Mori K, Komurasaki K, Arakawa Y (2006) Threshold laser power density for regime transition of a laser absorption wave in a reduced-density air atmosphere. Appl Phys Lett 88:121502CrossRef Mori K, Komurasaki K, Arakawa Y (2006) Threshold laser power density for regime transition of a laser absorption wave in a reduced-density air atmosphere. Appl Phys Lett 88:121502CrossRef
Zurück zum Zitat Ogino Y, Nagano A, Ishihara T, Ohnishi N (2013) A fitting formula for radiative cooling based on non-local thermodynamic equilibrium population from weakly-ionized air plasma. J Phys Conf Ser 454:012080CrossRef Ogino Y, Nagano A, Ishihara T, Ohnishi N (2013) A fitting formula for radiative cooling based on non-local thermodynamic equilibrium population from weakly-ionized air plasma. J Phys Conf Ser 454:012080CrossRef
Zurück zum Zitat Raizer Y (1965) HEATING OF A GAS BY A POWERFUL LIGHT PULSE. Sov Phys JETP 21:1508–1519 Raizer Y (1965) HEATING OF A GAS BY A POWERFUL LIGHT PULSE. Sov Phys JETP 21:1508–1519
Zurück zum Zitat Raizer YP (1977) Laser-induced discharge phenomena, Chap. 6. Consultants Bureau, New York and London Raizer YP (1977) Laser-induced discharge phenomena, Chap. 6. Consultants Bureau, New York and London
Zurück zum Zitat Ramsden SA, Davies WER (1964) Radiation scattered from the plasma produced by a focused ruby laser Beam. Phys Rev Lett 13:227–229CrossRef Ramsden SA, Davies WER (1964) Radiation scattered from the plasma produced by a focused ruby laser Beam. Phys Rev Lett 13:227–229CrossRef
Zurück zum Zitat Ramsden SA, Savic P (1964) A radiative detonation model for the development of a laser-induced spark in air. Nature 203:1217–1219CrossRef Ramsden SA, Savic P (1964) A radiative detonation model for the development of a laser-induced spark in air. Nature 203:1217–1219CrossRef
Zurück zum Zitat Sedov LI (1959) Similarity and dimension methods in mechanics. Academic Press, New York Sedov LI (1959) Similarity and dimension methods in mechanics. Academic Press, New York
Zurück zum Zitat Shimamura K, Ofosu JA, Komurasaki K, Koizumi H (2015) Predicting propagation limits of laser-supported detonation by Hugoniot analysis. Jpn J Appl Phys 54:016201CrossRef Shimamura K, Ofosu JA, Komurasaki K, Koizumi H (2015) Predicting propagation limits of laser-supported detonation by Hugoniot analysis. Jpn J Appl Phys 54:016201CrossRef
Zurück zum Zitat Shimano T, Ofosu JA, Matsui K et al (2017) Laser-induced discharge propagation velocity in helium and argon gases. Trans Jpn Soc Aeronaut Space Sci 60:378–381CrossRef Shimano T, Ofosu JA, Matsui K et al (2017) Laser-induced discharge propagation velocity in helium and argon gases. Trans Jpn Soc Aeronaut Space Sci 60:378–381CrossRef
Zurück zum Zitat Ushio M, Komurasaki K, Kawamura K, Arakawa Y (2008) Effect of laser supported detonation wave confinement on termination conditions. Shock Waves 18:35–39CrossRef Ushio M, Komurasaki K, Kawamura K, Arakawa Y (2008) Effect of laser supported detonation wave confinement on termination conditions. Shock Waves 18:35–39CrossRef
Zurück zum Zitat Wang T-S et al (2002) Advanced performance modeling of experimental laser lightcraft. J Propuls Power 18:1129–1138CrossRef Wang T-S et al (2002) Advanced performance modeling of experimental laser lightcraft. J Propuls Power 18:1129–1138CrossRef
Zurück zum Zitat Wang B, Komurasaki K, Yamaguchi T et al (2010) Energy conversion in a glass-laser-induced blast wave in air. J Appl Phys 108:124911CrossRef Wang B, Komurasaki K, Yamaguchi T et al (2010) Energy conversion in a glass-laser-induced blast wave in air. J Appl Phys 108:124911CrossRef
Zurück zum Zitat Zakharchenko SV (1984) Superdetonation optical discharge waves in air (λ = 1.06 μ). Sov J Quantum Electron 14:1429–1429CrossRef Zakharchenko SV (1984) Superdetonation optical discharge waves in air (λ = 1.06 μ). Sov J Quantum Electron 14:1429–1429CrossRef
Metadaten
Titel
Laser-Supported Detonation
verfasst von
Hiroshi Katsurayama
Kohei Matsui
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4618-1_7