Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Novel Materials and Devices Based on Nanofibers

verfasst von : Alexander L. Yarin, Filippo Pierini, Eyal Zussman, Marco Lauricella

Erschienen in: Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The six topics covered in the present chapter stem from recent applications of nanofibers in novel materials and devices. (i) Self-healing vascular nanotextured materials incorporate nanofibers filled with healing agents. When a material like that is damaged, the healing agents are released and polymerize spanning cracks and reparing engineering materials in situ, similarly to living tissues. (ii) Biopolymer-derived nanofibers can be formed from bio-waste, while serve in important novel biomedical and agricultural applications, as well as sophisticated filter media. The additional benefits of such nanotextured materials are in their biocompatibility and biodegradability. (iii) Nanofibers are also involved in thermo-pneumatic soft robots and actuators, which were recently developed. (iv) Biopolymer-derived nanofibers reveal significant triboelectric properties and thus, can be used as triboelectric nanogenerators. On the other hand, superhydrophobic electrospun fibrous membranes comprise an attractive venue for development of novel fabrics. (v) Nanofibers can be electroplated or sputter-coated, which leads to multiple novel applications, e.g., as nanotextured heaters, sensors, or highly effective electrostatic filters. (vi) Several additional physical properties, which can be incorporated in nanofibers include ferroelectricity, flexoelectricity and piezoelectricity, which can be employed in such devices as nanotextured wave-energy harvesters. Nanofibers can also be formed from conducting polymers and used in transparent fibrous heaters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdeta, M. D. (2016). Extraction, characterization and optimization of banana trunk fiber (Master’s thesis) Addis Ababa University. Abdeta, M. D. (2016). Extraction, characterization and optimization of banana trunk fiber (Master’s thesis) Addis Ababa University.
Zurück zum Zitat An, S., Hong, J.-H., Song, K. Y., Lee, M. W., Al-Deyab, S. S., Kim, J.-J., Yarin, A. L., & Yoon, S. S. (2017). Prevention of mold invasion by eco-friendly lignin/polycaprolactone nanofiber membranes for amelioration of public hygiene. Cellulose, 24, 951–965.CrossRef An, S., Hong, J.-H., Song, K. Y., Lee, M. W., Al-Deyab, S. S., Kim, J.-J., Yarin, A. L., & Yoon, S. S. (2017). Prevention of mold invasion by eco-friendly lignin/polycaprolactone nanofiber membranes for amelioration of public hygiene. Cellulose, 24, 951–965.CrossRef
Zurück zum Zitat An, S., Jo, H. S., Kim, D.-Y., Lee, H. J., Ju, B.-K., Al-Deyab, S. S., Ahn, J.-H., Qin, Y., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2016). Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Advanced Materials, 28, 7149–7154. An, S., Jo, H. S., Kim, D.-Y., Lee, H. J., Ju, B.-K., Al-Deyab, S. S., Ahn, J.-H., Qin, Y., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2016). Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Advanced Materials, 28, 7149–7154.
Zurück zum Zitat An, S., Jo, H. S., Li, G., Samuel, E., Yoon, S. S., & Yarin, A. L. (2020). Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanoparticles. Advanced Functional Materials, 30, 2001150. An, S., Jo, H. S., Li, G., Samuel, E., Yoon, S. S., & Yarin, A. L. (2020). Sustainable nanotextured wave energy harvester based on ferroelectric fatigue-free and flexoelectricity-enhanced piezoelectric P(VDF-TrFE) nanofibers with BaSrTiO3 nanoparticles. Advanced Functional Materials, 30, 2001150.
Zurück zum Zitat An, S., Kang, D. J., & Yarin, A. L. (2018a). A blister-like soft nanotextured thermo-pneumatic actuator as an artificial muscle. Nanoscale, 10, 16591–16600.CrossRef An, S., Kang, D. J., & Yarin, A. L. (2018a). A blister-like soft nanotextured thermo-pneumatic actuator as an artificial muscle. Nanoscale, 10, 16591–16600.CrossRef
Zurück zum Zitat An, S., Kim, Y. I., Jo, H. S., Kim, M.-W., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2018b) Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia, 143, 174–180. An, S., Kim, Y. I., Jo, H. S., Kim, M.-W., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2018b) Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. Acta Materialia, 143, 174–180.
Zurück zum Zitat An, S., Sankaran, A., & Yarin, A. L. (2018c). Natural biopolymer-based triboelectric nanogenerators via fast, facile, scalable solution blowing. ACS Applied Materials & Interfaces, 10, 37749–37759.CrossRef An, S., Sankaran, A., & Yarin, A. L. (2018c). Natural biopolymer-based triboelectric nanogenerators via fast, facile, scalable solution blowing. ACS Applied Materials & Interfaces, 10, 37749–37759.CrossRef
Zurück zum Zitat Boas, M., Burman, M., Yarin, A. L., & Zussman, E. (2018). Electrically-responsive deformation of polyelectrolyte complex (PEC) fibrous membrane. Polymer, 158, 262–269.CrossRef Boas, M., Burman, M., Yarin, A. L., & Zussman, E. (2018). Electrically-responsive deformation of polyelectrolyte complex (PEC) fibrous membrane. Polymer, 158, 262–269.CrossRef
Zurück zum Zitat Chen, K., Wu, J., & Yarin A. L. (2022). Electrospun membranes filtering 100 nm particles from air flow by means of the van der Waals and Coulomb forces. Journal of Membrane Science, 644, 120138. Chen, K., Wu, J., & Yarin A. L. (2022). Electrospun membranes filtering 100 nm particles from air flow by means of the van der Waals and Coulomb forces. Journal of Membrane Science, 644, 120138.
Zurück zum Zitat Dias, Y., Kolbasov, A., Sinha-Ray, S., Pourdeyhimi, B., & Yarin, A. L. (2020). Theoretical and experimental study of dissolution mechanism of cellulose. Journal of Molecular Liquids, 312, 113450.CrossRef Dias, Y., Kolbasov, A., Sinha-Ray, S., Pourdeyhimi, B., & Yarin, A. L. (2020). Theoretical and experimental study of dissolution mechanism of cellulose. Journal of Molecular Liquids, 312, 113450.CrossRef
Zurück zum Zitat Dias, Y. J., Robles, J. R., Sinha-Ray, S., Abiade, J., Pourdeyhimi, B., Niemczyk-Soczynska, B., Kolbuk, D., Sajkiewicz, P., & Yarin, A. L. (2021). Solution-blown poly(hydroxybutyrate) (PHB) and ε-poly-L-lysine (ε-PLL) sub-micro- and microfiber-based sustainable nonwovens with antimicrobial activity for single-use applications. ACS Biomaterials Science & Engineering, 7, 3980–3992.CrossRef Dias, Y. J., Robles, J. R., Sinha-Ray, S., Abiade, J., Pourdeyhimi, B., Niemczyk-Soczynska, B., Kolbuk, D., Sajkiewicz, P., & Yarin, A. L. (2021). Solution-blown poly(hydroxybutyrate) (PHB) and ε-poly-L-lysine (ε-PLL) sub-micro- and microfiber-based sustainable nonwovens with antimicrobial activity for single-use applications. ACS Biomaterials Science & Engineering, 7, 3980–3992.CrossRef
Zurück zum Zitat Duzyer, S., Sinha-Ray, S., Sinha-Ray, S., & Yarin, A. L. (2017). Transparent conducting electrodes from conducting polymer nanofibers and their application as thin-film heaters. Macromolecular Materials and Engineering, 1700188. Duzyer, S., Sinha-Ray, S., Sinha-Ray, S., & Yarin, A. L. (2017). Transparent conducting electrodes from conducting polymer nanofibers and their application as thin-film heaters. Macromolecular Materials and Engineering, 1700188.
Zurück zum Zitat Fermi, E. (1956). Thermodynamics. Dover Publ. Fermi, E. (1956). Thermodynamics. Dover Publ.
Zurück zum Zitat Jo, H. S., An, S., Lee, J.-G., Park, H. G., Al-Deyab, S. S., Yarin, A. L., & Yoon, S. S. (2017). Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Materials, 9, e347. Jo, H. S., An, S., Lee, J.-G., Park, H. G., Al-Deyab, S. S., Yarin, A. L., & Yoon, S. S. (2017). Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface. NPG Asia Materials, 9, e347.
Zurück zum Zitat Jo, H. S., Kwon, H.-J., Kim, T.-G., Park, C.-W., An, S., Yarin, A. L., & Yoon, S. S. (2018). Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale, 10, 19825–19834. Jo, H. S., Kwon, H.-J., Kim, T.-G., Park, C.-W., An, S., Yarin, A. L., & Yoon, S. S. (2018). Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale, 10, 19825–19834.
Zurück zum Zitat Kang, D. J., An, S., Yarin, A. L., & Anand, S. (2019). Programmable soft robotics based on nanotextured thermo-responsive actuators. Nanoscale, 11, 2065–2070.CrossRef Kang, D. J., An, S., Yarin, A. L., & Anand, S. (2019). Programmable soft robotics based on nanotextured thermo-responsive actuators. Nanoscale, 11, 2065–2070.CrossRef
Zurück zum Zitat Khansari, S., Duzyer, S., Sinha-Ray, S., Hockenberger, A., Yarin, A. L., & Pourdeyhimi, B. (2013a). Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens. Molecular Pharmaceutics, 10, 4509–4526.CrossRef Khansari, S., Duzyer, S., Sinha-Ray, S., Hockenberger, A., Yarin, A. L., & Pourdeyhimi, B. (2013a). Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens. Molecular Pharmaceutics, 10, 4509–4526.CrossRef
Zurück zum Zitat Khansari, S., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2013b). Biopolymer-based nanofiber mats and their mechanical characterization. Industrial & Engineering Chemistry Research, 52, 15104–15113.CrossRef Khansari, S., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2013b). Biopolymer-based nanofiber mats and their mechanical characterization. Industrial & Engineering Chemistry Research, 52, 15104–15113.CrossRef
Zurück zum Zitat Kim, Y. I., An, S., Kim, M.-W., Jo, H.-S., Kim, T.-G., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2019a). Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. Journal of Alloys and Compounds, 790, 1127–1136. Kim, Y. I., An, S., Kim, M.-W., Jo, H.-S., Kim, T.-G., Swihart, M. T., Yarin, A. L., & Yoon, S. S. (2019a). Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. Journal of Alloys and Compounds, 790, 1127–1136.
Zurück zum Zitat Kim, M.-W., An, S., Seok, H., Yoon, S. S., & Yarin, A. L. (2019b) Electrostatic transparent air filter membranes comprising metallized microfibers for particulate removal. ACS Applied Materials & Interfaces 11, 26323−26332. Kim, M.-W., An, S., Seok, H., Yoon, S. S., & Yarin, A. L. (2019b) Electrostatic transparent air filter membranes comprising metallized microfibers for particulate removal. ACS Applied Materials & Interfaces 11, 26323−26332.
Zurück zum Zitat Kim, M.-W., An, S., Seok, H., Yarin, A. L., & Yoon, S. S. (2020) Transparent metallized microfibers as recyclable electrostatic air filter with ionization. ACS Applied Materials & Interfaces, 12, 25266–25275. Kim, M.-W., An, S., Seok, H., Yarin, A. L., & Yoon, S. S. (2020) Transparent metallized microfibers as recyclable electrostatic air filter with ionization. ACS Applied Materials & Interfaces, 12, 25266–25275.
Zurück zum Zitat Kim, Y. I., An, S., Yarin, A. L., & Yoon, S. S. (2021a). Performance enhancement of soft nanotextured thermopneumatic actuator by incorporating silver nanowires into elastomer body. Soft Robotics, 8, 711–719.CrossRef Kim, Y. I., An, S., Yarin, A. L., & Yoon, S. S. (2021a). Performance enhancement of soft nanotextured thermopneumatic actuator by incorporating silver nanowires into elastomer body. Soft Robotics, 8, 711–719.CrossRef
Zurück zum Zitat Kim, M.-W., Kim, Y.-I., Park, C., Aldalbahi, A., Alanazi, H. S., An, S., Yarin, A. L., & Yoon, S. S. (2021b). Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal–organic–framework nanocrystals. Journal of Materials Science & Technology 85, 44–55. Kim, M.-W., Kim, Y.-I., Park, C., Aldalbahi, A., Alanazi, H. S., An, S., Yarin, A. L., & Yoon, S. S. (2021b). Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal–organic–framework nanocrystals. Journal of Materials Science & Technology 85, 44–55.
Zurück zum Zitat Kim, Y. I., An, S., Park, C., Kim, T., Aldalbahi, A., Hatshan, M. R., Yarin, A. L., & Yoon, S. S. (2022). Nanotextured soft electrothermo-pneumatic actuator for constructing lightweight, integrated, and untethered soft robotics. Soft Robotics, 9, 960–969.CrossRef Kim, Y. I., An, S., Park, C., Kim, T., Aldalbahi, A., Hatshan, M. R., Yarin, A. L., & Yoon, S. S. (2022). Nanotextured soft electrothermo-pneumatic actuator for constructing lightweight, integrated, and untethered soft robotics. Soft Robotics, 9, 960–969.CrossRef
Zurück zum Zitat Kolbasov, A., Sinha-Ray, S., Joijode, A., Hassan, M. A., Brown, D., Maze, B., Pourdeyhimi, P., & Yarin, A. L. (2016). Industrial-scale solution blowing of soy protein nanofibers. Industrial & Engineering Chemistry Research, 55, 323–333.CrossRef Kolbasov, A., Sinha-Ray, S., Joijode, A., Hassan, M. A., Brown, D., Maze, B., Pourdeyhimi, P., & Yarin, A. L. (2016). Industrial-scale solution blowing of soy protein nanofibers. Industrial & Engineering Chemistry Research, 55, 323–333.CrossRef
Zurück zum Zitat Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.CrossRef Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.CrossRef
Zurück zum Zitat Lee, M. W., An, S., Lee, C., Liou, M., Yarin, A. L., & Yoon, S. S. (2014). Self-healing transparent core-shell nanofiber coatings for anti-corrosive protection. Journal of Materials Chemistry A, 2, 7045–7053.CrossRef Lee, M. W., An, S., Lee, C., Liou, M., Yarin, A. L., & Yoon, S. S. (2014). Self-healing transparent core-shell nanofiber coatings for anti-corrosive protection. Journal of Materials Chemistry A, 2, 7045–7053.CrossRef
Zurück zum Zitat Lee, M. W., An, S., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2015a). Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Applied Materials & Interfaces 7, 19546–19554.CrossRef Lee, M. W., An, S., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2015a). Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Applied Materials & Interfaces 7, 19546–19554.CrossRef
Zurück zum Zitat Lee, M. W., An, S., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2015b). Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Applied Materials & Interfaces, 7, 19555–19561.CrossRef Lee, M. W., An, S., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2015b). Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Applied Materials & Interfaces, 7, 19555–19561.CrossRef
Zurück zum Zitat Lee, M. W., Sett, S., Yoon, S. S., & Yarin, A. L. (2016a). Self-healing of nanofiber-based composites in the course of stretching. Polymer, 103, 180–188.CrossRef Lee, M. W., Sett, S., Yoon, S. S., & Yarin, A. L. (2016a). Self-healing of nanofiber-based composites in the course of stretching. Polymer, 103, 180–188.CrossRef
Zurück zum Zitat Lee, M. W., Sett, S., Yoon, S. S., & Yarin, A. L. (2016b). Fatigue of self-healing nanofiber-based composites: Static test and subcritical crack propagation. ACS Applied Materials & Interfaces, 8, 18462–18470.CrossRef Lee, M. W., Sett, S., Yoon, S. S., & Yarin, A. L. (2016b). Fatigue of self-healing nanofiber-based composites: Static test and subcritical crack propagation. ACS Applied Materials & Interfaces, 8, 18462–18470.CrossRef
Zurück zum Zitat Lee, M. W., Yoon, S. S., & Yarin, A. L. (2016c). Solution-blown core−shell self-healing nano- and microfibers. ACS Applied Materials & Interfaces, 8, 4955–4962.CrossRef Lee, M. W., Yoon, S. S., & Yarin, A. L. (2016c). Solution-blown core−shell self-healing nano- and microfibers. ACS Applied Materials & Interfaces, 8, 4955–4962.CrossRef
Zurück zum Zitat Lee, M. W., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2017a). Thermally-driven self-healing using copper nanofiber heater. Applied Physics Letters, 111, 011902. Lee, M. W., Jo, H. S., Yoon, S. S., & Yarin, A. L. (2017a). Thermally-driven self-healing using copper nanofiber heater. Applied Physics Letters, 111, 011902.
Zurück zum Zitat Lee, M. W., Sett, S., An, S., Yoon, S. S., & Yarin, A. L. (2017b). Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Applied Materials & Interfaces, 9, 27223–27231.CrossRef Lee, M. W., Sett, S., An, S., Yoon, S. S., & Yarin, A. L. (2017b). Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Applied Materials & Interfaces, 9, 27223–27231.CrossRef
Zurück zum Zitat Lee, M. W., Yoon, S. S., & Yarin, A. L. (2017c). Release of self-healing agents in a material: What happens next? ACS Applied Materials & Interfaces, 9, 17449–17455.CrossRef Lee, M. W., Yoon, S. S., & Yarin, A. L. (2017c). Release of self-healing agents in a material: What happens next? ACS Applied Materials & Interfaces, 9, 17449–17455.CrossRef
Zurück zum Zitat Lembach, A., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C., & Yarin, A. L. (2010). Drop impact, spreading, splashing and penetration in electrospun nanofiber mats. Langmuir, 26, 9516–9523.CrossRef Lembach, A., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C., & Yarin, A. L. (2010). Drop impact, spreading, splashing and penetration in electrospun nanofiber mats. Langmuir, 26, 9516–9523.CrossRef
Zurück zum Zitat Sahu, R. P., Sett, S., Yarin, A. L., & Pourdeyhimi, B. (2015). Impact of aqueous suspension drops onto non-wettable membranes: Hydrodynamic focusing and penetration of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 467, 31–45.CrossRef Sahu, R. P., Sett, S., Yarin, A. L., & Pourdeyhimi, B. (2015). Impact of aqueous suspension drops onto non-wettable membranes: Hydrodynamic focusing and penetration of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 467, 31–45.CrossRef
Zurück zum Zitat Sett, S., Lee, M. W., Weith, M., Pourdeyhimi, B., & Yarin, A. L. (2015). Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. J. Materials Chem. B, 3, 2147–2162.CrossRef Sett, S., Lee, M. W., Weith, M., Pourdeyhimi, B., & Yarin, A. L. (2015). Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. J. Materials Chem. B, 3, 2147–2162.CrossRef
Zurück zum Zitat Sett, S., Stephansen, K., & Yarin, A. L. (2016). Solution-blown nanofiber mats from fish sarcoplasmic protein. Polymer, 93, 78–87.CrossRef Sett, S., Stephansen, K., & Yarin, A. L. (2016). Solution-blown nanofiber mats from fish sarcoplasmic protein. Polymer, 93, 78–87.CrossRef
Zurück zum Zitat Sinha-Ray S., Zhang Y., & Yarin, A. L. (2011a). Thorny devil nano-textured fibers: The way to cooling rates of the order of 1 kW/cm2. Langmuir, 27, 215–226. Sinha-Ray S., Zhang Y., & Yarin, A. L. (2011a). Thorny devil nano-textured fibers: The way to cooling rates of the order of 1 kW/cm2. Langmuir, 27, 215–226.
Zurück zum Zitat Sinha-Ray, S., Zhang, Y., Yarin, A. L., Davis, S. C., & Pourdeyhimi, B. (2011b). Solution blowing of soy protein fibers. Biomacromolecules, 12, 2357–2363.CrossRef Sinha-Ray, S., Zhang, Y., Yarin, A. L., Davis, S. C., & Pourdeyhimi, B. (2011b). Solution blowing of soy protein fibers. Biomacromolecules, 12, 2357–2363.CrossRef
Zurück zum Zitat Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner A. (2003). Compound core/shell polymer nanofibers by co-electrospinning. Advanced Materials, 15, 1929–1932.CrossRef Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner A. (2003). Compound core/shell polymer nanofibers by co-electrospinning. Advanced Materials, 15, 1929–1932.CrossRef
Zurück zum Zitat Yarin, A. L. (1993). Free liquid jets and films: Hydrodynamics and rheology. Longman Scientific & Technical and John Wiley & Sons. Yarin, A. L. (1993). Free liquid jets and films: Hydrodynamics and rheology. Longman Scientific & Technical and John Wiley & Sons.
Zurück zum Zitat Yarin, A. L., Lee, M. W., An, S., Yoon, S. S. (2019). Self-healing nanotextured vascular engineering materials. Springer Nature. Yarin, A. L., Lee, M. W., An, S., Yoon, S. S. (2019). Self-healing nanotextured vascular engineering materials. Springer Nature.
Zurück zum Zitat Yarin, A. L., Pourdeyhimi, B., & Ramakrishna, S. (2014). Fundamentals and applications of micro- and nanofibers. Cambridge University Press. Yarin, A. L., Pourdeyhimi, B., & Ramakrishna, S. (2014). Fundamentals and applications of micro- and nanofibers. Cambridge University Press.
Zurück zum Zitat Yarin, A. L., Roisman, I. V., & Tropea, C. (2017). Collision phenomena in liquids and solids. Cambridge University Press.CrossRef Yarin, A. L., Roisman, I. V., & Tropea, C. (2017). Collision phenomena in liquids and solids. Cambridge University Press.CrossRef
Zurück zum Zitat Yarin, A. L., Sinha-Ray, S., & Pourdeyhimi, B. (2010). Meltblowing: II-Linear and nonlinear waves on viscoelastic polymer jets. Journal of Applied Physics, 108, 034913.CrossRef Yarin, A. L., Sinha-Ray, S., & Pourdeyhimi, B. (2010). Meltblowing: II-Linear and nonlinear waves on viscoelastic polymer jets. Journal of Applied Physics, 108, 034913.CrossRef
Zurück zum Zitat Zou, F., Li, G., Wang, X., & Yarin, A. L. (2021). Dynamic hydrophobicity of superhydrophobic PTFE-SiO2 electrospun fibrous membranes. Journal of Membrane Science, 619, 118810.CrossRef Zou, F., Li, G., Wang, X., & Yarin, A. L. (2021). Dynamic hydrophobicity of superhydrophobic PTFE-SiO2 electrospun fibrous membranes. Journal of Membrane Science, 619, 118810.CrossRef
Metadaten
Titel
Novel Materials and Devices Based on Nanofibers
verfasst von
Alexander L. Yarin
Filippo Pierini
Eyal Zussman
Marco Lauricella
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48439-1_1