Skip to main content

2024 | OriginalPaper | Buchkapitel

Prediction of Stress Fields in Particulate Polymer Composites Using Micromechanics-Based Artificial Intelligence Model

verfasst von : Sristi Gupta, Tanmoy Mukhopadhyay, Divyesh Varade, Vinod Kushvaha

Erschienen in: Recent Developments in Structural Engineering, Volume 1

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Particulate polymer composites (PPC) are widely used in various engineering fields for their high strength-to-weight ratio and impressive mechanical properties. Typically, methods for predicting the mechanical behavior of such materials include tensile tests, finite element simulations, and numerical analysis. However, recent advances in artificial intelligence (AI) have enabled improved prediction of mechanical behavior of various materials. In AI-based approaches, microstructural information like fiber orientation and grain morphology are generally defined as inputs through multi-dimensional images. The objective of the proposed investigation is to reduce the prediction complexity and computational efficiency in AI-based methods when compared with finite element modeling (FEM). AI-based algorithms are typically data-driven approaches primarily dependent on the input data quality. Subsequently, the optimal selection of the input labels (material properties using FEM software) is imperative to ensure higher prediction accuracy. In this study, we predict the mechanical behavior of a particulate polymer composite based on the images of the stress fields developed from FEM simulations used to train a paired image-to-image translation model (pix2pix). The pix2pix model is based on a conditional Generative Adversarial Network (cGAN), where we train the encoder by 512 × 512 pixel images corresponding to stresses in the y-direction. The results of the AI algorithm show that the pix2pix model is computationally efficient and highly accurate in predicting the effective stress fields of a detailed representative area element of FEM. We observed the maximum accuracy determined by the correlation coefficient as 0.906 at 20,000 iterations of the algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arora A, Sharma A, Singh M, Mahajan DK, Kushvaha V (2023) Fatigue response of glass-filled epoxy composites. A crack initiation and propagation study. Int J Fatigue 170:107542 Arora A, Sharma A, Singh M, Mahajan DK, Kushvaha V (2023) Fatigue response of glass-filled epoxy composites. A crack initiation and propagation study. Int J Fatigue 170:107542
2.
Zurück zum Zitat Kushvaha V, Tippur H (2014) Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy. Compos B Eng 64:126–137CrossRef Kushvaha V, Tippur H (2014) Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy. Compos B Eng 64:126–137CrossRef
3.
Zurück zum Zitat Sharma A, Kushvaha V (2020) Predictive modelling of fracture behaviour in silica-filled polymer composite subjected to impact with varying loading rates using artificial neural network. Eng Fract Mech 239:107328CrossRef Sharma A, Kushvaha V (2020) Predictive modelling of fracture behaviour in silica-filled polymer composite subjected to impact with varying loading rates using artificial neural network. Eng Fract Mech 239:107328CrossRef
4.
Zurück zum Zitat Sharma A, Munde Y, Kushvaha V (2021) Representative volume element based micromechanical modelling of rod shaped glass filled epoxy composites. SN Appl Sci 3:2047CrossRef Sharma A, Munde Y, Kushvaha V (2021) Representative volume element based micromechanical modelling of rod shaped glass filled epoxy composites. SN Appl Sci 3:2047CrossRef
5.
Zurück zum Zitat Das AD, Mannoni G, Früh AE, Orsi D, Pinalli R, Dalcanale E (2019) Damage-reporting carbon fiber epoxy composites. ACS Appl Polym Mater 1:2990–2997CrossRef Das AD, Mannoni G, Früh AE, Orsi D, Pinalli R, Dalcanale E (2019) Damage-reporting carbon fiber epoxy composites. ACS Appl Polym Mater 1:2990–2997CrossRef
6.
Zurück zum Zitat Gupta S, Sharma A, Varma RK, Kushvaha V (2022) A review on performance of near-surface mounted-carbon fiber-reinforced polymer laminates bonded into slits. Polym Compos 43:6782–6802CrossRef Gupta S, Sharma A, Varma RK, Kushvaha V (2022) A review on performance of near-surface mounted-carbon fiber-reinforced polymer laminates bonded into slits. Polym Compos 43:6782–6802CrossRef
7.
Zurück zum Zitat Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J (2020) Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput Mater 6:617 Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J (2020) Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput Mater 6:617
8.
Zurück zum Zitat Capela C, Oliveira SE, Ferreira JAM (2019) Fatigue behavior of short carbon fiber reinforced epoxy composites. Compos B Eng 164:191–197CrossRef Capela C, Oliveira SE, Ferreira JAM (2019) Fatigue behavior of short carbon fiber reinforced epoxy composites. Compos B Eng 164:191–197CrossRef
9.
Zurück zum Zitat Sharma A, Madhushri P, Kushvaha V, Kumar A (2020) Prediction of the fracture toughness of silicafilled epoxy composites using K-nearest neighbor (KNN) method. In: 2020 International conference on computational performance evaluation (ComPE). IEEE, pp 194–198 Sharma A, Madhushri P, Kushvaha V, Kumar A (2020) Prediction of the fracture toughness of silicafilled epoxy composites using K-nearest neighbor (KNN) method. In: 2020 International conference on computational performance evaluation (ComPE). IEEE, pp 194–198
10.
Zurück zum Zitat Cataldo F (2008) Study on the reinforcing effect of milled carbon fibers in a natural rubber based composite. J Macromolecular Sci Part B 47:818–828CrossRef Cataldo F (2008) Study on the reinforcing effect of milled carbon fibers in a natural rubber based composite. J Macromolecular Sci Part B 47:818–828CrossRef
11.
Zurück zum Zitat Zhou C, Feng G, Zhao X (2023) An efficient calculation method for stress and strain of concrete pump truck boom considering wind load variation. Machines 11:161CrossRef Zhou C, Feng G, Zhao X (2023) An efficient calculation method for stress and strain of concrete pump truck boom considering wind load variation. Machines 11:161CrossRef
12.
Zurück zum Zitat Yang Z, Yu C-H, Guo K, Buehler MJ (2021) End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. J Mech Phys Solids 154:104506MathSciNetCrossRef Yang Z, Yu C-H, Guo K, Buehler MJ (2021) End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. J Mech Phys Solids 154:104506MathSciNetCrossRef
13.
Zurück zum Zitat Bhaduri A, Gupta A, Graham-Brady L (2022) Stress field prediction in fiber-reinforced composite materials using a deep learning approach. Compos B Eng 238:109879CrossRef Bhaduri A, Gupta A, Graham-Brady L (2022) Stress field prediction in fiber-reinforced composite materials using a deep learning approach. Compos B Eng 238:109879CrossRef
14.
Zurück zum Zitat Dey AK (2021) Introduction to Von Mises stress concept Dey AK (2021) Introduction to Von Mises stress concept
15.
Zurück zum Zitat Dey S, Mukhopadhyay T, Adhikari S, Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press Dey S, Mukhopadhyay T, Adhikari S, Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press
16.
Zurück zum Zitat Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334CrossRef Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334CrossRef
17.
Zurück zum Zitat Isanaka BR, Mukhopadhyay T, Varma RK, Kushvaha V (2022) On exploiting machine learning for failure pattern driven strength enhancement of honeycomb lattices. Acta Mater 239:118226CrossRef Isanaka BR, Mukhopadhyay T, Varma RK, Kushvaha V (2022) On exploiting machine learning for failure pattern driven strength enhancement of honeycomb lattices. Acta Mater 239:118226CrossRef
18.
Zurück zum Zitat Guo K, Yang Z, Yu C-H, Buehler MJ (2021) Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz 8:1153–1172CrossRef Guo K, Yang Z, Yu C-H, Buehler MJ (2021) Artificial intelligence and machine learning in design of mechanical materials. Mater Horiz 8:1153–1172CrossRef
19.
Zurück zum Zitat Yang Z, Yu C-H, Buehler MJ (2021) Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci Adv 7 Yang Z, Yu C-H, Buehler MJ (2021) Deep learning model to predict complex stress and strain fields in hierarchical composites. Sci Adv 7
20.
Zurück zum Zitat Gupta S, Mukhopadhyay T, Kushvaha V (2022) Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites. Defence Technol 262:619 Gupta S, Mukhopadhyay T, Kushvaha V (2022) Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites. Defence Technol 262:619
21.
Zurück zum Zitat Rich E, Knight K, Nair Shivashankar B (2009) Artificial intelligence. McGraw Hill Education Rich E, Knight K, Nair Shivashankar B (2009) Artificial intelligence. McGraw Hill Education
22.
Zurück zum Zitat Henkes A, Wessels H (2022) Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics. Comput Methods Appl Mech Eng 400:115497MathSciNetCrossRef Henkes A, Wessels H (2022) Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics. Comput Methods Appl Mech Eng 400:115497MathSciNetCrossRef
23.
Zurück zum Zitat Sharma A, Mukhopadhyay T, Rangappa SM, Kushvaha V (2022) Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch Comput Methods Eng 29:3341–3385CrossRef Sharma A, Mukhopadhyay T, Rangappa SM, Kushvaha V (2022) Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch Comput Methods Eng 29:3341–3385CrossRef
24.
Zurück zum Zitat Song H-S, Mugabi J, Jeong J-H (2023) Pix2Pix and deep neural network-based deep learning technology for predicting vortical flow fields and aerodynamic performance of airfoils. Appl Sci 13:1019CrossRef Song H-S, Mugabi J, Jeong J-H (2023) Pix2Pix and deep neural network-based deep learning technology for predicting vortical flow fields and aerodynamic performance of airfoils. Appl Sci 13:1019CrossRef
25.
Zurück zum Zitat Aggarwal A, Mittal M, Battineni G (2021) Generative adversarial network. An overview of theory and applications. Int J Inf Manage Data Insights 1:100004 Aggarwal A, Mittal M, Battineni G (2021) Generative adversarial network. An overview of theory and applications. Int J Inf Manage Data Insights 1:100004
26.
Zurück zum Zitat Kushvaha V (2016) Synthesis, processing and dynamic fracture behavior of particulate epoxy composites with conventional and hierarchical micro-/nano-fillers. Auburn, Alabama Kushvaha V (2016) Synthesis, processing and dynamic fracture behavior of particulate epoxy composites with conventional and hierarchical micro-/nano-fillers. Auburn, Alabama
27.
Zurück zum Zitat Nanavati T, Modi H, Patel D, Parikh V, Gupta J (eds) (2020) Generative adversarial networks: a comparative analysis Nanavati T, Modi H, Patel D, Parikh V, Gupta J (eds) (2020) Generative adversarial networks: a comparative analysis
28.
Zurück zum Zitat Shen Y, Moore RH, Deo A (2023) Visualizing Abaqus output database in ParaView. A universal converter in Python and C++. SoftwareX 22:101331 Shen Y, Moore RH, Deo A (2023) Visualizing Abaqus output database in ParaView. A universal converter in Python and C++. SoftwareX 22:101331
29.
Zurück zum Zitat Shabbir H (2014) Post processing of output database (ODB) by Abaqus scripting interface (ASI) and texture analysis by Matlab tool box MTEX. Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) Shabbir H (2014) Post processing of output database (ODB) by Abaqus scripting interface (ASI) and texture analysis by Matlab tool box MTEX. Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)
Metadaten
Titel
Prediction of Stress Fields in Particulate Polymer Composites Using Micromechanics-Based Artificial Intelligence Model
verfasst von
Sristi Gupta
Tanmoy Mukhopadhyay
Divyesh Varade
Vinod Kushvaha
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9625-4_11