Skip to main content
Erschienen in: Physics of Metals and Metallography 11/2023

01.11.2023 | ELECTRICAL AND MAGNETIC PROPERTIES

Advanced Non-Contact Optical Methods for Measuring the Magnetocaloric Effect

verfasst von: A. P. Kamantsev, A. A. Amirov, D. M. Yusupov, L. N. Butvina, Yu. S. Koshkid’ko, A. V. Golovchan, V. I. Valkov, A. M. Aliev, V. V. Koledov, V. G. Shavrov

Erschienen in: Physics of Metals and Metallography | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate measuring the temperature of materials, especially in high pulsed and alternating magnetic fields, represents a major challenge in magnetic and, in particular, magnetocaloric research. The disadvantages of the used contact temperature sensors (microthermocouples and film thermistors) are: (1) the effect of electromagnetic interference on their indications, which is proportional to the time derivative of the magnetic field, (2) their relatively long response time due to thermal inertia, and (3) the impossibility of accurate measurement temperatures of thin and microstructured samples. The described difficulties can be avoided by using non-contact optical methods for measuring the temperature of magnets in high magnetic fields. In this review, we describe non-contact optical methods for measuring the magnetocaloric effect using known materials as an example, and provide a comparative analysis of the main characteristics of these methods, such as: maximal magnetic field, sampling frequency, time constant and spectral range of the detector, and temperature error and resolution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. H. Kolm and A. J. Freeman, “Intense magnetic fields,” Sci. Am. 212 (4), 66–81 (1965).CrossRef H. H. Kolm and A. J. Freeman, “Intense magnetic fields,” Sci. Am. 212 (4), 66–81 (1965).CrossRef
2.
Zurück zum Zitat S. V. Vonsovskii, “Ferromagnetism as an ordering problem,” Izv. Akad. Nauk SSSR. Ser. Fiz. 11, 485 (1947). S. V. Vonsovskii, “Ferromagnetism as an ordering problem,” Izv. Akad. Nauk SSSR. Ser. Fiz. 11, 485 (1947).
3.
Zurück zum Zitat V. A. Ginzburg, “Behavior of ferromagnetics near the Curie point,” Zh. Exp. Teor. Fiz. 17, 833–836 (1947). V. A. Ginzburg, “Behavior of ferromagnetics near the Curie point,” Zh. Exp. Teor. Fiz. 17, 833–836 (1947).
6.
Zurück zum Zitat K. P. Belov, Magnetic Transformations (Gos. Izd-vo Fiz.-Mat. Lit., Moscow, 1959). K. P. Belov, Magnetic Transformations (Gos. Izd-vo Fiz.-Mat. Lit., Moscow, 1959).
7.
Zurück zum Zitat N. V. Mushnikov, Magnetism and Magnetic Phase Transitions: Textbook (Izd-vo Ural. Univ., Ekaterinburg, 2017). N. V. Mushnikov, Magnetism and Magnetic Phase Transitions: Textbook (Izd-vo Ural. Univ., Ekaterinburg, 2017).
9.
Zurück zum Zitat A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics Publishing, 2003).CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Institute of Physics Publishing, 2003).CrossRef
16.
Zurück zum Zitat T. Kihara, I. Katakura, M. Tokunaga, A. Matsuo, K. Kawaguchi, A. Kondo, K. Kindo, W. Ito, X. Xu, and R. Kainuma, “Optical imaging and magnetocaloric effect measurements in pulsed high magnetic fields and their application to Ni–Co–Mn–In Heusler alloy,” J. Alloys Compd. 577, S722–S725 (2013). https://doi.org/10.1016/j.jallcom.2012.02.018CrossRef T. Kihara, I. Katakura, M. Tokunaga, A. Matsuo, K. Kawaguchi, A. Kondo, K. Kindo, W. Ito, X. Xu, and R. Kainuma, “Optical imaging and magnetocaloric effect measurements in pulsed high magnetic fields and their application to Ni–Co–Mn–In Heusler alloy,” J. Alloys Compd. 577, S722–S725 (2013). https://​doi.​org/​10.​1016/​j.​jallcom.​2012.​02.​018CrossRef
21.
Zurück zum Zitat M. G. Zavareh, Y. Skourski, J. Wosnitza, C. Salazar Mejãa, A. K. Nayak, C. Felser, and M. Nicklas, “Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15,” Appl. Phys. Lett. 35, 71904 (2015). https://doi.org/10.1063/1.4913446CrossRef M. G. Zavareh, Y. Skourski, J. Wosnitza, C. Salazar Mejãa, A. K. Nayak, C. Felser, and M. Nicklas, “Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15,” Appl. Phys. Lett. 35, 71904 (2015). https://​doi.​org/​10.​1063/​1.​4913446CrossRef
22.
Zurück zum Zitat C. Salazar Mejía, M. Ghorbani Zavareh, A. K. Nayak, Y. Skourski, J. Wosnitza, C. Felser, and M. Nicklas, “Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni–Mn–In Heusler alloys,” J. Appl. Phys. 117, 17E710 (2015). https://doi.org/10.1063/1.4916556 C. Salazar Mejía, M. Ghorbani Zavareh, A. K. Nayak, Y. Skourski, J. Wosnitza, C. Felser, and M. Nicklas, “Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni–Mn–In Heusler alloys,” J. Appl. Phys. 117, 17E710 (2015). https://​doi.​org/​10.​1063/​1.​4916556
23.
Zurück zum Zitat T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. G. Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct ΔT ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5, 24013 (2016). https://doi.org/10.1103/physrevapplied.5.024013CrossRef T. Gottschall, K. P. Skokov, F. Scheibel, M. Acet, M. G. Zavareh, Y. Skourski, J. Wosnitza, M. Farle, and O. Gutfleisch, “Dynamical effects of the martensitic transition in magnetocaloric heusler alloys from direct ΔT ad measurements under different magnetic-field-sweep rates,” Phys. Rev. Appl. 5, 24013 (2016). https://​doi.​org/​10.​1103/​physrevapplied.​5.​024013CrossRef
27.
Zurück zum Zitat Yu. S. Koshkid’ko, E. T. Dilmieva, A. P. Kamantsev, J. Cwik, K. Rogacki, A. V. Mashirov, V. V. Khovaylo, C. S. Mejia, M. A. Zagrebin, V. V. Sokolovskiy, V. D. Buchelnikov, P. Ari-Gur, P. Bhale, V. G. Shavrov, and V. V. Koledov, “Magnetocaloric effect and magnetic phase diagram of Ni–Mn–Ga Heusler alloy in steady and pulsed magnetic fields,” J. Alloys Compd. 904, 164051 (2022). https://doi.org/10.1016/j.jallcom.2022.164051CrossRef Yu. S. Koshkid’ko, E. T. Dilmieva, A. P. Kamantsev, J. Cwik, K. Rogacki, A. V. Mashirov, V. V. Khovaylo, C. S. Mejia, M. A. Zagrebin, V. V. Sokolovskiy, V. D. Buchelnikov, P. Ari-Gur, P. Bhale, V. G. Shavrov, and V. V. Koledov, “Magnetocaloric effect and magnetic phase diagram of Ni–Mn–Ga Heusler alloy in steady and pulsed magnetic fields,” J. Alloys Compd. 904, 164051 (2022). https://​doi.​org/​10.​1016/​j.​jallcom.​2022.​164051CrossRef
29.
Zurück zum Zitat K. Losko and G. Mette, “Errors of thermocouples in measuring temperatures under magnetic fields,” in Temperature Measurements in Novel Equipment Objects (Mir, Moscow, 1965), pp. 29–36. K. Losko and G. Mette, “Errors of thermocouples in measuring temperatures under magnetic fields,” in Temperature Measurements in Novel Equipment Objects (Mir, Moscow, 1965), pp. 29–36.
31.
36.
Zurück zum Zitat F. Cugini, G. Porcari, C. Viappiani, L. Caron, A. O. Dos Santos, L. P. Cardoso, E. C. Passamani, J. R. C. Proveti, S. Gama, E. Brück, and M. Solzi, “Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect,” Appl. Phys. Lett. 108, 12407 (2016). https://doi.org/10.1063/1.4939451CrossRef F. Cugini, G. Porcari, C. Viappiani, L. Caron, A. O. Dos Santos, L. P. Cardoso, E. C. Passamani, J. R. C. Proveti, S. Gama, E. Brück, and M. Solzi, “Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect,” Appl. Phys. Lett. 108, 12407 (2016). https://​doi.​org/​10.​1063/​1.​4939451CrossRef
37.
38.
Zurück zum Zitat A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, and V. G. Shavrov, “Direct measurements of the magnetocaloric effect of Fe49Rh51 using the mirage effect,” J. Appl. Phys. 127 (2020). https://doi.org/10.1063/5.0006355 A. A. Amirov, F. Cugini, A. P. Kamantsev, T. Gottschall, M. Solzi, A. M. Aliev, Yu. I. Spichkin, V. V. Koledov, and V. G. Shavrov, “Direct measurements of the magnetocaloric effect of Fe49Rh51 using the mirage effect,” J. Appl. Phys. 127 (2020). https://​doi.​org/​10.​1063/​5.​0006355
39.
40.
41.
Zurück zum Zitat M. J. Pereira, T. Santos, R. Correia, J. S. Amaral, V. S. Amaral, S. Fabbrici, and F. Albertini, “Direct measurement and imaging of magnetocaloric effect inhomogeneities at the microscale in Ni44Co6Mn30Ga20 with infrared thermography,” J. Magn. Magn. Mater. 538, 168283 (2021). https://doi.org/10.1016/j.jmmm.2021.168283CrossRef M. J. Pereira, T. Santos, R. Correia, J. S. Amaral, V. S. Amaral, S. Fabbrici, and F. Albertini, “Direct measurement and imaging of magnetocaloric effect inhomogeneities at the microscale in Ni44Co6Mn30Ga20 with infrared thermography,” J. Magn. Magn. Mater. 538, 168283 (2021). https://​doi.​org/​10.​1016/​j.​jmmm.​2021.​168283CrossRef
42.
43.
Zurück zum Zitat J. Döntgen, J. Rudolph, T. Gottschall, O. Gutfleisch, S. Salomon, A. Ludwig, and D. Hägele, “Temperature dependent low-field measurements of the magnetocaloric ΔT with sub-mK resolution in small volume and thin film samples,” Appl. Phys. Lett. 106, 032408 (2015). https://doi.org/10.1063/1.4906426CrossRef J. Döntgen, J. Rudolph, T. Gottschall, O. Gutfleisch, S. Salomon, A. Ludwig, and D. Hägele, “Temperature dependent low-field measurements of the magnetocaloric ΔT with sub-mK resolution in small volume and thin film samples,” Appl. Phys. Lett. 106, 032408 (2015). https://​doi.​org/​10.​1063/​1.​4906426CrossRef
46.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). https://doi.org/10.1016/j.jmmm.2016.12.063CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, N. H. Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S. Tereshina, and L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor,” J. Magn. Magn. Mater. 440, 70–73 (2017). https://​doi.​org/​10.​1016/​j.​jmmm.​2016.​12.​063CrossRef
47.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Valkov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Phys. Math. J. 5, 537–544 (2020). https://doi.org/10.47475/2500-0101-2020-15413CrossRef A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, A. P. Sivachenko, B. M. Todris, V. I. Valkov, A. V. Koshelev, and G. A. Shandryuk, “Magnetocaloric effect and magnetization of composite material based on MnAs in pulsed magnetic fields up to 40 kOe,” Chelyabinsk Phys. Math. J. 5, 537–544 (2020). https://​doi.​org/​10.​47475/​2500-0101-2020-15413CrossRef
48.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, V. I. Val’kov, B. M. Todris, and S. V. Taskaev, “Magnetocaloric effect and magnetization of gadolinium in quasi-stationary and pulsed magnetic fields up to 40 kOe,” Phys. Met. Metallogr. 123, 419–423 (2022). https://doi.org/10.1134/s0031918x22040068CrossRef A. P. Kamantsev, V. V. Koledov, V. G. Shavrov, L. N. Butvina, A. V. Golovchan, V. I. Val’kov, B. M. Todris, and S. V. Taskaev, “Magnetocaloric effect and magnetization of gadolinium in quasi-stationary and pulsed magnetic fields up to 40 kOe,” Phys. Met. Metallogr. 123, 419–423 (2022). https://​doi.​org/​10.​1134/​s0031918x2204006​8CrossRef
49.
Zurück zum Zitat L. Butvina, “Polycrystalline fibers,” in Infrared Fiber Optics (CRC Press, 1998), pp. 209–249. L. Butvina, “Polycrystalline fibers,” in Infrared Fiber Optics (CRC Press, 1998), pp. 209–249.
50.
Zurück zum Zitat L. N. Butvina, Y. G. Kolesnikov, and V. A. Prokashev, “Crystalline fibres for the IR region,” Sov. Light-Wave Commun. 1 (1), 65 (1991). L. N. Butvina, Y. G. Kolesnikov, and V. A. Prokashev, “Crystalline fibres for the IR region,” Sov. Light-Wave Commun. 1 (1), 65 (1991).
53.
Zurück zum Zitat S. Pilyushko, V. Umnov, K. Zaramenskikh, M. Kuznetsov, L. Butvina, G. Polyakova, M. Morozov, and A. Yu. Demina, “Technology for producing IR-range optical fiber from silver and tallium halogenides and their application in industry,” in Optical Technologies, Materials and Systems: Proc. Int. Sci.-Tech. Conf., Ed. by A. S. Sigov (MIREA Ross. Tekhnol. Univ., Moscow, 2022), pp. 234–239. S. Pilyushko, V. Umnov, K. Zaramenskikh, M. Kuznetsov, L. Butvina, G. Polyakova, M. Morozov, and A. Yu. Demina, “Technology for producing IR-range optical fiber from silver and tallium halogenides and their application in industry,” in Optical Technologies, Materials and Systems: Proc. Int. Sci.-Tech. Conf., Ed. by A. S. Sigov (MIREA Ross. Tekhnol. Univ., Moscow, 2022), pp. 234–239.
54.
Zurück zum Zitat A. Rogal’skii, Infrared Sensors (Nauka, Novosibirsk, 2003). A. Rogal’skii, Infrared Sensors (Nauka, Novosibirsk, 2003).
56.
Zurück zum Zitat R. G. Jackson, Novel Sensors and Sensing, Series in Sensors (Institute of Physics Publishing, Bristol, 2004). R. G. Jackson, Novel Sensors and Sensing, Series in Sensors (Institute of Physics Publishing, Bristol, 2004).
57.
Zurück zum Zitat T. Okoshi, K. Okamoto, and M. Otsu, Fiber-Optic Sensors (Energoatomizdat, Leningrad, 1991). T. Okoshi, K. Okamoto, and M. Otsu, Fiber-Optic Sensors (Energoatomizdat, Leningrad, 1991).
58.
Zurück zum Zitat N. G. Alekseev, V. A. Prokhorov, and K. V. Chmutov, Modern Electronic Devices and Circuits in Physicochemical Research (Khimiya, Moscow, 1971). N. G. Alekseev, V. A. Prokhorov, and K. V. Chmutov, Modern Electronic Devices and Circuits in Physicochemical Research (Khimiya, Moscow, 1971).
59.
Zurück zum Zitat V. P. Ponomarenko, Quantum Photosensorics (Orion, Moscow, 2018). V. P. Ponomarenko, Quantum Photosensorics (Orion, Moscow, 2018).
61.
Zurück zum Zitat Yu. S. Koshkid’ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D. Kowalska, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, V. I. Valkov, A. V. Golovchan, A. P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionova, I. V. Shchetinin, and V. Sampath, “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields,” J. Alloys Compd. 798, 810–819 (2019). https://doi.org/10.1016/j.jallcom.2019.05.246CrossRef Yu. S. Koshkid’ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D. Kowalska, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, V. I. Valkov, A. V. Golovchan, A. P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionova, I. V. Shchetinin, and V. Sampath, “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields,” J. Alloys Compd. 798, 810–819 (2019). https://​doi.​org/​10.​1016/​j.​jallcom.​2019.​05.​246CrossRef
62.
Zurück zum Zitat V. P. Vavilov and A. G. Klimov, Thermal Vision Cameras and Their Applications (Intel Universal, Moscow, 2002). V. P. Vavilov and A. G. Klimov, Thermal Vision Cameras and Their Applications (Intel Universal, Moscow, 2002).
64.
65.
Zurück zum Zitat A. P. Kamantsev, A. A. Amirov, D. M. Yusupov, A. V. Golovchan, O. E. Kovalev, A. S. Komlev, and A. M. Aliev, “The magnetocaloric effect in La(Fe,Mn,Si)13HX based composites: Experiment and theory,” Phys. Met. Metallogr. 124 (11), 1121–1131 (2023). https://doi.org/10.1134/S0031918X23601695 A. P. Kamantsev, A. A. Amirov, D. M. Yusupov, A. V. Golovchan, O. E. Kovalev, A. S. Komlev, and A. M. Aliev, “The magnetocaloric effect in La(Fe,Mn,Si)13HX based composites: Experiment and theory,” Phys. Met. Metallogr. 124 (11), 1121–1131 (2023). https://doi.org/10.1134/S0031918X23601695
66.
Zurück zum Zitat P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi, “Mirage-effect measurement of thermal diffusivity. Part I: Experiment,” Can. J. Phys. 64, 1165–1167 (1986). https://doi.org/10.1139/p86-202CrossRef P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi, “Mirage-effect measurement of thermal diffusivity. Part I: Experiment,” Can. J. Phys. 64, 1165–1167 (1986). https://​doi.​org/​10.​1139/​p86-202CrossRef
68.
Zurück zum Zitat L. A. Skvortsov, Fundamentals of Photothermal Radiometry and Laser Thermography (Tekhnosfera, Moscow, 2019). L. A. Skvortsov, Fundamentals of Photothermal Radiometry and Laser Thermography (Tekhnosfera, Moscow, 2019).
69.
Zurück zum Zitat A. P. Kamantsev, A. A. Amirov, V. D. Zaporozhets, I. F. Gribanov, A. V. Golovchan, V. I. Valkov, O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, A. M. Aliev, and V. V. Koledov, “Effect of magnetic field and hydrostatic pressure on metamagnetic isostructural phase transition and multicaloric response of Fe49Rh51 alloy,” Metals 13, 956 (2023). https://doi.org/10.3390/met13050956CrossRef A. P. Kamantsev, A. A. Amirov, V. D. Zaporozhets, I. F. Gribanov, A. V. Golovchan, V. I. Valkov, O. O. Pavlukhina, V. V. Sokolovskiy, V. D. Buchelnikov, A. M. Aliev, and V. V. Koledov, “Effect of magnetic field and hydrostatic pressure on metamagnetic isostructural phase transition and multicaloric response of Fe49Rh51 alloy,” Metals 13, 956 (2023). https://​doi.​org/​10.​3390/​met13050956CrossRef
70.
Zurück zum Zitat T. G. M. Bonadio, R. R. Pezarini, A. N. Medina, V. S. Zanuto, M. L. Baesso, D. Z. Montanher, L. S. Herculano, C. Jacinto, and N. G. C. Astrath, “Thermoelastic properties across martensitic transformation of Ni2MnGa Heusler alloy from time-resolved photothermal mirror,” Phys. B: Condens. Matter 605, 412713 (2021). https://doi.org/10.1016/j.physb.2020.412713CrossRef T. G. M. Bonadio, R. R. Pezarini, A. N. Medina, V. S. Zanuto, M. L. Baesso, D. Z. Montanher, L. S. Herculano, C. Jacinto, and N. G. C. Astrath, “Thermoelastic properties across martensitic transformation of Ni2MnGa Heusler alloy from time-resolved photothermal mirror,” Phys. B: Condens. Matter 605, 412713 (2021). https://​doi.​org/​10.​1016/​j.​physb.​2020.​412713CrossRef
Metadaten
Titel
Advanced Non-Contact Optical Methods for Measuring the Magnetocaloric Effect
verfasst von
A. P. Kamantsev
A. A. Amirov
D. M. Yusupov
L. N. Butvina
Yu. S. Koshkid’ko
A. V. Golovchan
V. I. Valkov
A. M. Aliev
V. V. Koledov
V. G. Shavrov
Publikationsdatum
01.11.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 11/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23601646

Weitere Artikel der Ausgabe 11/2023

Physics of Metals and Metallography 11/2023 Zur Ausgabe