Skip to main content

15.05.2024

An improved density peaks clustering based on sparrow search algorithm

verfasst von: Yaru Chen, Jie Zhou, Xingshi He, Xinglong Luo

Erschienen in: Cluster Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Density peaks clustering (DPC) algorithm has attracted the attention of scholars because of its simplicity and efficiency. However, it certainly has some disadvantages. On the one hand, the cut-off distance of DPC is artificially set, which greatly affects the clustering results of the DPC. On the other hand, the one-step allocation strategy is not robust and has poor fault tolerance. In this paper, we propose an improved density peaks clustering based on sparrow search algorithm(SSA-DPC) to solve the problems. First, the cut-off distance is optimized by the sparrow search algorithm with the ACC index as the object function to reduce the impact of cut-off distance on clustering results. Second, the idea of mutual nearest neighbor is introduced to divide the dataset into high-density region and low-density region, and different allocation strategies are adopted for different regions to overcome the problem of poor fault tolerance of one-step allocation strategy in DPC. Finally, in order to validate SSA-DPC, we test it on synthetic and real-world datasets, and compare it with DPC, SNN-DPC, DBSCAN, k-means, KNN-DPC and DPCSA methods. Experimental results suggest that SSA-DPC can effectively find clusters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu, X., Zhu, X., Wu, G., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2013) Wu, X., Zhu, X., Wu, G., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2013)
2.
Zurück zum Zitat Dong, G., Tian, L., Du, R., Fu, M., Stanley, H.E.: Analysis of percolation behaviors of clustered networks with partial supportdependence relations. Physica A 394, 370–378 (2014)MathSciNetCrossRef Dong, G., Tian, L., Du, R., Fu, M., Stanley, H.E.: Analysis of percolation behaviors of clustered networks with partial supportdependence relations. Physica A 394, 370–378 (2014)MathSciNetCrossRef
3.
Zurück zum Zitat Song, J., Liu, J., Zhao, L.: Clustering algorithms research. J. Softw. 19(1), 48–61 (2008)CrossRef Song, J., Liu, J., Zhao, L.: Clustering algorithms research. J. Softw. 19(1), 48–61 (2008)CrossRef
4.
Zurück zum Zitat Ismkhan, H.: Ik-means+: An iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recogn. 79, 402–413 (2018)CrossRef Ismkhan, H.: Ik-means+: An iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recogn. 79, 402–413 (2018)CrossRef
5.
Zurück zum Zitat He, S., Ji, B., Chan, S.: Chameleon: survey-free updating of a fingerprint database for indoor localization. IEEE Pervasive Comput. 15(4), 66–75 (2016)CrossRef He, S., Ji, B., Chan, S.: Chameleon: survey-free updating of a fingerprint database for indoor localization. IEEE Pervasive Comput. 15(4), 66–75 (2016)CrossRef
6.
Zurück zum Zitat Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. Int. Conf. Knowl. Discov. Data Min. 96(34), 226–231 (1996) Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. Int. Conf. Knowl. Discov. Data Min. 96(34), 226–231 (1996)
7.
Zurück zum Zitat Segundo, P., Rodriguez-Losada, D.: Robust global feature based data association with a sparse bit optimized maximum clique algorithm. IEEE Trans. Rob. 29(5), 1332–1339 (2013)CrossRef Segundo, P., Rodriguez-Losada, D.: Robust global feature based data association with a sparse bit optimized maximum clique algorithm. IEEE Trans. Rob. 29(5), 1332–1339 (2013)CrossRef
8.
Zurück zum Zitat Y. Zhang, K. Rohe. Understanding regularized spectral clustering via graph conductance. Advances in Neural Information Processing Systems, 31(2018). Y. Zhang, K. Rohe. Understanding regularized spectral clustering via graph conductance. Advances in Neural Information Processing Systems, 31(2018).
9.
Zurück zum Zitat Rodriguez, A.L.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)CrossRef Rodriguez, A.L.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)CrossRef
10.
Zurück zum Zitat Xu, X., Ding, S., Ding, L.: Survey on density peaks clustering algorithm. J. Softw. 33(5), 1800–1816 (2020) Xu, X., Ding, S., Ding, L.: Survey on density peaks clustering algorithm. J. Softw. 33(5), 1800–1816 (2020)
11.
Zurück zum Zitat Zhang, Q., Dai, Y., Wang, G.: Density peaks clustering based on balance density and connectivity. Pattern Recogn. 134, 109052 (2023)CrossRef Zhang, Q., Dai, Y., Wang, G.: Density peaks clustering based on balance density and connectivity. Pattern Recogn. 134, 109052 (2023)CrossRef
12.
Zurück zum Zitat Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl.-Based Syst. 99, 135–145 (2016)CrossRef Du, M., Ding, S., Jia, H.: Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl.-Based Syst. 99, 135–145 (2016)CrossRef
13.
Zurück zum Zitat Yu, H., Chen, L., Yao, J.: A three-way density peak clustering method based on evidence theory. Knowl.-Based Syst. 211, 106532 (2021)CrossRef Yu, H., Chen, L., Yao, J.: A three-way density peak clustering method based on evidence theory. Knowl.-Based Syst. 211, 106532 (2021)CrossRef
14.
Zurück zum Zitat Xu, X., Ding, S., Shi, Z.: An improved density peaks clustering algorithm with fast finding cluster centers. Knowl.-Based Syst. 158, 65–74 (2018)CrossRef Xu, X., Ding, S., Shi, Z.: An improved density peaks clustering algorithm with fast finding cluster centers. Knowl.-Based Syst. 158, 65–74 (2018)CrossRef
15.
Zurück zum Zitat Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)MathSciNetCrossRef Liu, R., Wang, H., Yu, X.: Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf. Sci. 450, 200–226 (2018)MathSciNetCrossRef
16.
Zurück zum Zitat Seyedi, S., Lotfi, A., Moradi, P., Qader, N.: Dynamic graph-based label propagation for density peaks clustering. Expert Syst. Appl. 115, 314–328 (2019)CrossRef Seyedi, S., Lotfi, A., Moradi, P., Qader, N.: Dynamic graph-based label propagation for density peaks clustering. Expert Syst. Appl. 115, 314–328 (2019)CrossRef
17.
Zurück zum Zitat Xie, J., Gao, H., Xie, W.: K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset. Sci. Sin. Inform. 46(2), 258–280 (2016)CrossRef Xie, J., Gao, H., Xie, W.: K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset. Sci. Sin. Inform. 46(2), 258–280 (2016)CrossRef
18.
Zurück zum Zitat Luo, X., He, X., Zhou, J., Yang, X.: Improved density peak clustering approach based on African vultures optimization algorithm. J. Shandong Univ. 59(01), 46–55+71 (2024) Luo, X., He, X., Zhou, J., Yang, X.: Improved density peak clustering approach based on African vultures optimization algorithm. J. Shandong Univ. 59(01), 46–55+71 (2024)
19.
Zurück zum Zitat Zhao, J., Tang, J., Shi, A., Fan, T., Xu, L.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspired Comput. 15(1), 24–42 (2020)CrossRef Zhao, J., Tang, J., Shi, A., Fan, T., Xu, L.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspired Comput. 15(1), 24–42 (2020)CrossRef
20.
Zurück zum Zitat Yang, S., Shi, H.: Density peak clustering algorithm based on improved fruit fly optimization algorithm. Microelectron. Comput. 39(9), 26–34 (2022) Yang, S., Shi, H.: Density peak clustering algorithm based on improved fruit fly optimization algorithm. Microelectron. Comput. 39(9), 26–34 (2022)
21.
Zurück zum Zitat Zhu, X., Shang, J., Sun, Y., Li, F., Liu, J., Yuan, S.: PSO-CFDP: a particle swarm optimization-based automatic density peaks clustering method for cancer subtyping. Hum. Hered. 84(1), 9–20 (2019)CrossRef Zhu, X., Shang, J., Sun, Y., Li, F., Liu, J., Yuan, S.: PSO-CFDP: a particle swarm optimization-based automatic density peaks clustering method for cancer subtyping. Hum. Hered. 84(1), 9–20 (2019)CrossRef
22.
Zurück zum Zitat Jiankai, X.: Research and Application of a New Swarm Intelligence Optimization Technology. Donghua University (2020). Jiankai, X.: Research and Application of a New Swarm Intelligence Optimization Technology. Donghua University (2020).
23.
Zurück zum Zitat Du, M., Ding, S., Xu, X., Xue, Y.: Density peaks clustering using geodesic distances. Int. J. Mach. Learn. Cybern. 9, 1335–1349 (2018)CrossRef Du, M., Ding, S., Xu, X., Xue, Y.: Density peaks clustering using geodesic distances. Int. J. Mach. Learn. Cybern. 9, 1335–1349 (2018)CrossRef
24.
Zurück zum Zitat Xie, J., Gao, H., Xie, W., Liu, X., Grant, W.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354, 19–40 (2016)CrossRef Xie, J., Gao, H., Xie, W., Liu, X., Grant, W.: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Inf. Sci. 354, 19–40 (2016)CrossRef
25.
Zurück zum Zitat Suo, M., Zhu, B., Zhou, D., An, R., Li, S.: Neighborhood grid clustering and its application in fault diagnosis of satellite power system. Proc. Inst. Mech. Eng. Part G 233(4), 1270–1283 (2019)CrossRef Suo, M., Zhu, B., Zhou, D., An, R., Li, S.: Neighborhood grid clustering and its application in fault diagnosis of satellite power system. Proc. Inst. Mech. Eng. Part G 233(4), 1270–1283 (2019)CrossRef
26.
Zurück zum Zitat Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 100(1), 68–86 (1971)CrossRef Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 100(1), 68–86 (1971)CrossRef
27.
Zurück zum Zitat Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. Acm Trans. Knowl. Discov. Data. 1(1), 4-es (2007)CrossRef Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. Acm Trans. Knowl. Discov. Data. 1(1), 4-es (2007)CrossRef
28.
Zurück zum Zitat Jain, M.L.: Data clustering: a users dilemma. Pattern Recognition and Machine Intelligence: First International Conference, Springer Berlin Heidelberg, (2005) 1–10. Jain, M.L.: Data clustering: a users dilemma. Pattern Recognition and Machine Intelligence: First International Conference, Springer Berlin Heidelberg, (2005) 1–10.
29.
Zurück zum Zitat Fu, L., Medico, E.: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 1–15 (2007)CrossRef Fu, L., Medico, E.: FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 1–15 (2007)CrossRef
30.
Zurück zum Zitat Veenman, C.J., Reinders, M.J., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–80 (2002)CrossRef Veenman, C.J., Reinders, M.J., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–80 (2002)CrossRef
31.
Zurück zum Zitat Sigillito, V., Wing, S., Hutton, L., Baker, K.: Classification of radar returns from the ionosphere using neural networks. J. Hopkins APL Tech. Dig. 10(3), 262–266 (1989) Sigillito, V., Wing, S., Hutton, L., Baker, K.: Classification of radar returns from the ionosphere using neural networks. J. Hopkins APL Tech. Dig. 10(3), 262–266 (1989)
32.
Zurück zum Zitat Chang, H., Yeung, D.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)CrossRef Chang, H., Yeung, D.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)CrossRef
33.
Zurück zum Zitat Frnti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recogn. 39(5), 761–775 (2006)CrossRef Frnti, P., Virmajoki, O.: Iterative shrinking method for clustering problems. Pattern Recogn. 39(5), 761–775 (2006)CrossRef
34.
Zurück zum Zitat Dagang, W.A., Shifei, D.I., Jin, Z.H.: Research of density peaks clustering algorithm based on second-order K neighbors. J. Front. Comput. Sci. Technol. 15(8), 1490 (2021) Dagang, W.A., Shifei, D.I., Jin, Z.H.: Research of density peaks clustering algorithm based on second-order K neighbors. J. Front. Comput. Sci. Technol. 15(8), 1490 (2021)
35.
Zurück zum Zitat Dua, C.G.: UCI Machine Learning Repository (2017). Dua, C.G.: UCI Machine Learning Repository (2017).
36.
Zurück zum Zitat Dias, R.M., Rocha, T., Biscaro, H., Peres, S.: Hand movement recognition for brazilian sign language: a study using distance-based neural networks. international joint conference on neural networks. IEEE, (2009) 697–704. Dias, R.M., Rocha, T., Biscaro, H., Peres, S.: Hand movement recognition for brazilian sign language: a study using distance-based neural networks. international joint conference on neural networks. IEEE, (2009) 697–704.
37.
Zurück zum Zitat Blake.: UCI repository of machine learning databases. html (1998). Blake.: UCI repository of machine learning databases. html (1998).
38.
Zurück zum Zitat Street, W., Wolberg, W., Mangasarian, O.: Nuclear feature extraction for breast tumor diagnosis. Biomedical image processing and biomedical visualization. SPIE 1905(1993) 861–870. Street, W., Wolberg, W., Mangasarian, O.: Nuclear feature extraction for breast tumor diagnosis. Biomedical image processing and biomedical visualization. SPIE 1905(1993) 861–870.
39.
Zurück zum Zitat Fowlkes, C.M.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)CrossRef Fowlkes, C.M.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)CrossRef
40.
Zurück zum Zitat Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. CRC Press, Boca Raton (1984) Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. CRC Press, Boca Raton (1984)
41.
Zurück zum Zitat Borg, N.L., Boeva, V.: Comparison of Clustering Approaches for Gene Expression Data. SCAI. (2013) 55–64. Borg, N.L., Boeva, V.: Comparison of Clustering Approaches for Gene Expression Data. SCAI. (2013) 55–64.
42.
Zurück zum Zitat Vinh, N., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 2837–2854 (2010) Vinh, N., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 2837–2854 (2010)
43.
Zurück zum Zitat Y. Wang, J. Qian, M. Hassan, X. Zhang, T. Zhang, C. Yang, X. Zhou, F. Jia. Density peak clustering algorithms: A review on the decade 20142023. Expert Systems with Applications, (2023) 121860. Y. Wang, J. Qian, M. Hassan, X. Zhang, T. Zhang, C. Yang, X. Zhou, F. Jia. Density peak clustering algorithms: A review on the decade 20142023. Expert Systems with Applications, (2023) 121860.
44.
Zurück zum Zitat Dhal, K.G., Rai, R., Das, A., Ray, S., Ghosal, D., Kanjilal, R.: Chaotic fitness-dependent quasi-reflected Aquila optimizer for superpixel based white blood cell segmentation. Neural Comput. Appl. 35(21), 15315–15332 (2023)CrossRef Dhal, K.G., Rai, R., Das, A., Ray, S., Ghosal, D., Kanjilal, R.: Chaotic fitness-dependent quasi-reflected Aquila optimizer for superpixel based white blood cell segmentation. Neural Comput. Appl. 35(21), 15315–15332 (2023)CrossRef
45.
Zurück zum Zitat Sasmal, D.G.: A survey on the utilization of Superpixel image for clustering based image segmentation. Multimed. Tools Appl. 82(23), 61–63 (2023)CrossRef Sasmal, D.G.: A survey on the utilization of Superpixel image for clustering based image segmentation. Multimed. Tools Appl. 82(23), 61–63 (2023)CrossRef
Metadaten
Titel
An improved density peaks clustering based on sparrow search algorithm
verfasst von
Yaru Chen
Jie Zhou
Xingshi He
Xinglong Luo
Publikationsdatum
15.05.2024
Verlag
Springer US
Erschienen in
Cluster Computing
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-024-04384-9

Premium Partner