Skip to main content

2023 | OriginalPaper | Buchkapitel

Digital Twin and Education in Manufacturing

verfasst von : Giacomo Barbieri, David Sanchez-Londoño, David Andres Gutierrez, Rafael Vigon, Elisa Negri, Luca Fumagalli

Erschienen in: The Digital Twin

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning Factories (LFs) enable learning in a factory environment, and – due to the possibility of experiential learning – in manufacturing they are considered the most promising approach to acquire the skills necessary to succeed in the increasingly complex and technologically driven workplace, political, and social arenas of the twenty-first century. Due to the modelling capabilities at the basis of this technology, Digital Twin (DT) can support the implementation of LFs..
In this chapter, the role of DT in manufacturing education is explored through two illustrative examples. Here, the DT technology is utilized to build digital LFs adopted for learning purposes. The first example shows a virtual flow shop that allows students to learn about: (i) Scheduling; (ii) Condition-based Maintenance; (iii) Internet of Things. Whereas in the second example, Virtual Commissioning (VC) is utilized to virtually verify the PLC (Programmable Logic Controller) code before its deployment, allowing students to learn both PLC programming and code verification techniques. The implemented teaching activities were targeted both to students from university and vocational schools. Furthermore, they dealt with different phases of the lifecycle of manufacturing processes. Throughout this chapter, it will be demonstrated that the application of the DT technology to LFs enables the building of a flexible teaching environment that can be customized based on the type of students and the competences that must be taught.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Sanchez-Londono, D., Barbieri, G., & Garces, K. (2022). XWare: a Middleware for Smart Retrofitting in Maintenance. IFAC-PapersOnLine, 55(19), 109–114.
 
Literatur
1.
Zurück zum Zitat Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653–167671. Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653–167671.
2.
Zurück zum Zitat Liu, M., Shuiliang, F., Huiyue, D., & Cunzhi, X. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346–361. Liu, M., Shuiliang, F., Huiyue, D., & Cunzhi, X. (2021). Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346–361.
3.
Zurück zum Zitat Lu, Y., Chao, L., Kai Wang, I. K., Huiyue, H., & Xun, X. (2020). Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837. Lu, Y., Chao, L., Kai Wang, I. K., Huiyue, H., & Xun, X. (2020). Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837.
4.
Zurück zum Zitat Liljaniemi, A., & Paavilainen, H. (2020). Using digital twin technology in engineering education – Course concept to explore benefits and barriers. Open Engineering, 10(1), 377–385. Liljaniemi, A., & Paavilainen, H. (2020). Using digital twin technology in engineering education – Course concept to explore benefits and barriers. Open Engineering, 10(1), 377–385.
5.
Zurück zum Zitat Nikolaev, S., Gusev, M., Padalitsa, D., Mozhenkov, E., Mishin, S., & Uzhinsky, I. (2018). Implementation of “digital twin” concept for modern project-based engineering education. In IFIP international conference on product lifecycle management. Nikolaev, S., Gusev, M., Padalitsa, D., Mozhenkov, E., Mishin, S., & Uzhinsky, I. (2018). Implementation of “digital twin” concept for modern project-based engineering education. In IFIP international conference on product lifecycle management.
6.
Zurück zum Zitat Rassudov, L., & Korunets, A. (2020). COVID-19 pandemic challenges for engineering education. In XI international conference on electrical power drive systems (ICEPDS). Rassudov, L., & Korunets, A. (2020). COVID-19 pandemic challenges for engineering education. In XI international conference on electrical power drive systems (ICEPDS).
7.
Zurück zum Zitat Sepasgozar, S. M. (2020). Digital twin and web-based virtual gaming technologies for online education: A case of construction management and engineering. Applied Sciences, 10(13), 4678. Sepasgozar, S. M. (2020). Digital twin and web-based virtual gaming technologies for online education: A case of construction management and engineering. Applied Sciences, 10(13), 4678.
8.
Zurück zum Zitat Hamid, M. H. M. I., Masrom, M., & Salim, K. R. (2014). Review of learning models for production based education training in technical education. In International conference on teaching and learning in computing and engineering. Hamid, M. H. M. I., Masrom, M., & Salim, K. R. (2014). Review of learning models for production based education training in technical education. In International conference on teaching and learning in computing and engineering.
9.
Zurück zum Zitat Hempen, S., Wischniewski, S., Maschek, T., & Deuse, J. (2010). Experiential learning in academic education: A teaching concept for efficient work system design. In 4th workshop of the special interest group on experimental interactive learning in industrial management. Hempen, S., Wischniewski, S., Maschek, T., & Deuse, J. (2010). Experiential learning in academic education: A teaching concept for efficient work system design. In 4th workshop of the special interest group on experimental interactive learning in industrial management.
10.
Zurück zum Zitat Plorin, D., & Müller, E. (2013). Developing an ambient assisted living environment applying the advanced learning factory. In International simulation and gaming association conference. Plorin, D., & Müller, E. (2013). Developing an ambient assisted living environment applying the advanced learning factory. In International simulation and gaming association conference.
11.
Zurück zum Zitat Barbieri, G., Garces, K., Abolghasem, S., Martinez, S., Pinto, M. F., Andrade, G., Castro, F., & Jimenez, F. (2021). An engineering multidisciplinary undergraduate specialty with emphasis in society 5.0. International Journal of Engineering Education, 37(3), 744–760. Barbieri, G., Garces, K., Abolghasem, S., Martinez, S., Pinto, M. F., Andrade, G., Castro, F., & Jimenez, F. (2021). An engineering multidisciplinary undergraduate specialty with emphasis in society 5.0. International Journal of Engineering Education, 37(3), 744–760.
12.
Zurück zum Zitat Lamancusa, J. S., Zayas, J. L., Soyster, A. L., Morell, L., & Jorgensen, J. (2008). 2006 Bernard M. Gordon Prize Lecture*: The learning factory: Industry‐partnered active learning. Journal of Engineering Education, 97(1), 5–11. Lamancusa, J. S., Zayas, J. L., Soyster, A. L., Morell, L., & Jorgensen, J. (2008). 2006 Bernard M. Gordon Prize Lecture*: The learning factory: Industry‐partnered active learning. Journal of Engineering Education, 97(1), 5–11.
13.
Zurück zum Zitat R. S. (1988). Außerbetriebliche CIM-Schulung in der Lernfabrik. In Produktionsforum’88 (pp. 581–601). R. S. (1988). Außerbetriebliche CIM-Schulung in der Lernfabrik. In Produktionsforum’88 (pp. 581–601).
14.
Zurück zum Zitat Alptekin, S., Pouraghabagher, R., McQuaid, P., & Waldorf, D. (2001). Teaching factory. In Annual conference. Alptekin, S., Pouraghabagher, R., McQuaid, P., & Waldorf, D. (2001). Teaching factory. In Annual conference.
15.
Zurück zum Zitat Wagner, U., AlGeddawy, T., ElMaraghy, H., & Mÿller, E. (2012). The state-of-the-art and prospects of learning factories. Procedia CiRP, 3, 109–114. Wagner, U., AlGeddawy, T., ElMaraghy, H., & Mÿller, E. (2012). The state-of-the-art and prospects of learning factories. Procedia CiRP, 3, 109–114.
16.
Zurück zum Zitat Sudhoff, M., Prinz, C., & Kuhlenkötter, B. (2020). A systematic analysis of learning factories in Germany-concepts, production processes, didactics. Procedia Manufacturing, 45, 114–120. Sudhoff, M., Prinz, C., & Kuhlenkötter, B. (2020). A systematic analysis of learning factories in Germany-concepts, production processes, didactics. Procedia Manufacturing, 45, 114–120.
17.
Zurück zum Zitat Wienbruch, T., Leineweber, S., Kreimeier, D., & Kuhlenkötter, B. (2018). Evolution of SMEs towards Industrie 4.0 through a scenario based learning factory training. Procedia Manufacturing, 23, 141–146. Wienbruch, T., Leineweber, S., Kreimeier, D., & Kuhlenkötter, B. (2018). Evolution of SMEs towards Industrie 4.0 through a scenario based learning factory training. Procedia Manufacturing, 23, 141–146.
18.
Zurück zum Zitat Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, V., & Ranz, F. (2015). Learning factories for research, education, and training. Procedia CiRp, 32, 1–6. Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, V., & Ranz, F. (2015). Learning factories for research, education, and training. Procedia CiRp, 32, 1–6.
19.
Zurück zum Zitat Abele, E. (2016). Learning factory. CIRP Encyclopedia of Production Engineering. Abele, E. (2016). Learning factory. CIRP Encyclopedia of Production Engineering.
20.
Zurück zum Zitat Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H., Seliger, G., Sivard, G., ElMaraghy, W., Hummel, V., Tisch, M., & Seifermann, S. (2017). Learning factories for future oriented research and education in manufacturing. CIRP Annals, 66(2), 803–826. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H., Seliger, G., Sivard, G., ElMaraghy, W., Hummel, V., Tisch, M., & Seifermann, S. (2017). Learning factories for future oriented research and education in manufacturing. CIRP Annals, 66(2), 803–826.
21.
Zurück zum Zitat Andrés, M., Álvaro, G., & Julián, M. (2019). Advantages of learning factories for production planning based on shop floor simulation: A step towards smart factories in Industry 4.0. In World conference on engineering education (EDUNINE). Andrés, M., Álvaro, G., & Julián, M. (2019). Advantages of learning factories for production planning based on shop floor simulation: A step towards smart factories in Industry 4.0. In World conference on engineering education (EDUNINE).
22.
Zurück zum Zitat Haghighi, A., Shariatzadeh, N., Sivard, G., Lundholm, T., & Eriksson, Y. (2014). Digital learning factories: Conceptualization, review and discussion. In 6th Swedish production symposium. Haghighi, A., Shariatzadeh, N., Sivard, G., Lundholm, T., & Eriksson, Y. (2014). Digital learning factories: Conceptualization, review and discussion. In 6th Swedish production symposium.
23.
Zurück zum Zitat Al-Geddawy, T. (2020). A digital twin creation method for an opensource low-cost changeable learning factory. Procedia Manufacturing, 51, 1799–1805. Al-Geddawy, T. (2020). A digital twin creation method for an opensource low-cost changeable learning factory. Procedia Manufacturing, 51, 1799–1805.
24.
Zurück zum Zitat Protic, A., Jin, Z., Marian, R., Abd, K., Campbell, D., & Chahl, J. (2020). Implementation of a bi-directional digital twin for Industry 4 labs in academia: A solution based on OPC UA. In IEEE international conference on industrial engineering and engineering management (IEEM). Protic, A., Jin, Z., Marian, R., Abd, K., Campbell, D., & Chahl, J. (2020). Implementation of a bi-directional digital twin for Industry 4 labs in academia: A solution based on OPC UA. In IEEE international conference on industrial engineering and engineering management (IEEM).
25.
Zurück zum Zitat Brenner, B., & Hummel, V. (2017). Digital twin as enabler for an innovative digital shopfloor management system in the ESB Logistics Learning Factory at Reutlingen-University. Procedia Manufacturing, 9, 198–205. Brenner, B., & Hummel, V. (2017). Digital twin as enabler for an innovative digital shopfloor management system in the ESB Logistics Learning Factory at Reutlingen-University. Procedia Manufacturing, 9, 198–205.
26.
Zurück zum Zitat Ralph, B. J., Schwarz, A., & Stockinger, M. (2020). An implementation approach for an academic learning factory for the metal forming industry with special focus on digital twins and finite element analysis. Procedia Manufacturing, 45, 253–258. Ralph, B. J., Schwarz, A., & Stockinger, M. (2020). An implementation approach for an academic learning factory for the metal forming industry with special focus on digital twins and finite element analysis. Procedia Manufacturing, 45, 253–258.
27.
Zurück zum Zitat Hänggi, R., Nyffenegger, F., Ehrig, F., Jaeschke, P., & Bernhardsgrütter, R. (2020). Smart learning factory–network approach for learning and transfer in a digital & physical set up. In IFIP international conference on product lifecycle management. Hänggi, R., Nyffenegger, F., Ehrig, F., Jaeschke, P., & Bernhardsgrütter, R. (2020). Smart learning factory–network approach for learning and transfer in a digital & physical set up. In IFIP international conference on product lifecycle management.
28.
Zurück zum Zitat Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing, 9, 113–120. Uhlemann, T. H. J., Schock, C., Lehmann, C., Freiberger, S., & Steinhilper, R. (2017). The digital twin: Demonstrating the potential of real time data acquisition in production systems. Procedia Manufacturing, 9, 113–120.
29.
Zurück zum Zitat Grube, D., Malik, A. A., & Bilberg, A. (2019). SMEs can touch Industry 4.0 in the smart learning factory. Procedia Manufacturing, 31, 219–224. Grube, D., Malik, A. A., & Bilberg, A. (2019). SMEs can touch Industry 4.0 in the smart learning factory. Procedia Manufacturing, 31, 219–224.
30.
Zurück zum Zitat Martinez, S., Mariño, A., Sanchez, S., Montes, A. M., Triana, J. M., Barbieri, G., Abolghasem, S., Vera, J., & Guevara, M. (2021). A digital twin demonstrator to enable flexible manufacturing with robotics: A process supervision case study. Production & Manufacturing Research. Martinez, S., Mariño, A., Sanchez, S., Montes, A. M., Triana, J. M., Barbieri, G., Abolghasem, S., Vera, J., & Guevara, M. (2021). A digital twin demonstrator to enable flexible manufacturing with robotics: A process supervision case study. Production & Manufacturing Research.
31.
Zurück zum Zitat Umeda, Y., Ota, J., Shirafuji, S., Kojima, F., Saito, M., Matsuzawa, H., & Sukekawa, T. (2020). Exercise of digital kaizen activities based on ‘digital triplet’ concept. Procedia Manufacturing, 45, 325–330. Umeda, Y., Ota, J., Shirafuji, S., Kojima, F., Saito, M., Matsuzawa, H., & Sukekawa, T. (2020). Exercise of digital kaizen activities based on ‘digital triplet’ concept. Procedia Manufacturing, 45, 325–330.
32.
Zurück zum Zitat Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939–948.
33.
Zurück zum Zitat Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-Papers Online, 51, 1016–1022. Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-Papers Online, 51, 1016–1022.
34.
Zurück zum Zitat Biesinger, F., & Weyrich, M. (2019). The facets of digital twins in production and the automotive industry. In 23rd international conference on mechatronics technology (ICMT). Biesinger, F., & Weyrich, M. (2019). The facets of digital twins in production and the automotive industry. In 23rd international conference on mechatronics technology (ICMT).
35.
Zurück zum Zitat Post, F. H., & Van Walsum, T. (1993). Fluid flow visualization. In Focus on scientific visualization (pp. 1–40). Springer. Post, F. H., & Van Walsum, T. (1993). Fluid flow visualization. In Focus on scientific visualization (pp. 1–40). Springer.
36.
Zurück zum Zitat Bei, Y., & Fregly, B. J. (2004). Multibody dynamic simulation of knee contact mechanics. Medical Engineering & Physics, 26, 777–789. Bei, Y., & Fregly, B. J. (2004). Multibody dynamic simulation of knee contact mechanics. Medical Engineering & Physics, 26, 777–789.
37.
Zurück zum Zitat Pandolfi, A., & Ortiz, M. (2002). An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers, 18, 148–159. Pandolfi, A., & Ortiz, M. (2002). An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers, 18, 148–159.
38.
Zurück zum Zitat Schiehlen, W. (1997). Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1, 149–188.MathSciNetMATH Schiehlen, W. (1997). Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1, 149–188.MathSciNetMATH
39.
Zurück zum Zitat Hübner, B., Walhorn, E., & Dinkler, D. (2004). A monolithic approach to fluid–structure interaction using space–time finite elements. Computer Methods in Applied Mechanics and Engineering, 193, 2087–2104.MATH Hübner, B., Walhorn, E., & Dinkler, D. (2004). A monolithic approach to fluid–structure interaction using space–time finite elements. Computer Methods in Applied Mechanics and Engineering, 193, 2087–2104.MATH
40.
Zurück zum Zitat O’Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119, 244–261. O’Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119, 244–261.
41.
Zurück zum Zitat Sherman, W. (2003). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann. Sherman, W. (2003). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann.
42.
Zurück zum Zitat Soete, N., Claeys, A., Hoedt, S., Mahy, B., & Cottyn, J. (2015). Towards mixed reality in SCADA applications. IFAC-Papers Online, 48, 2417–2422. Soete, N., Claeys, A., Hoedt, S., Mahy, B., & Cottyn, J. (2015). Towards mixed reality in SCADA applications. IFAC-Papers Online, 48, 2417–2422.
43.
Zurück zum Zitat Havard, V., Jeanne, B., Lacomblez, M., & Baudry, D. (2019). Digital twin and virtual reality: A co-simulation environment for design and assessment of industrial workstations. Production & Manufacturing Research, 7, 472–489. Havard, V., Jeanne, B., Lacomblez, M., & Baudry, D. (2019). Digital twin and virtual reality: A co-simulation environment for design and assessment of industrial workstations. Production & Manufacturing Research, 7, 472–489.
44.
Zurück zum Zitat Wursthorn, S., Coelho, A. H., & Staub, G. (2004). Applications for mixed reality. In XXth ISPRS congress, Istanbul, Turkey. Wursthorn, S., Coelho, A. H., & Staub, G. (2004). Applications for mixed reality. In XXth ISPRS congress, Istanbul, Turkey.
45.
Zurück zum Zitat Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Frontiers in Psychology, 9, 2086. Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Frontiers in Psychology, 9, 2086.
46.
Zurück zum Zitat Matuszka, T., Gombos, G., & Kiss, A. (2013). A new approach for indoor navigation using semantic webtechnologies and augmented reality. In International conference on virtual, augmented and mixed reality. Matuszka, T., Gombos, G., & Kiss, A. (2013). A new approach for indoor navigation using semantic webtechnologies and augmented reality. In International conference on virtual, augmented and mixed reality.
47.
Zurück zum Zitat Barbieri, G., Bertuzzi, A., Capriotti, A., Ragazzini, L., Gutierrez, D., Negri, E., & Fumagalli, L. (2021). A virtual commissioning based methodology to integrate digital twins into manufacturing systems. Production Engineering, 15, 397–412. Barbieri, G., Bertuzzi, A., Capriotti, A., Ragazzini, L., Gutierrez, D., Negri, E., & Fumagalli, L. (2021). A virtual commissioning based methodology to integrate digital twins into manufacturing systems. Production Engineering, 15, 397–412.
48.
Zurück zum Zitat Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems. Springer.MATH Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems. Springer.MATH
49.
Zurück zum Zitat Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.MATH Mitchell, M. (1998). An introduction to genetic algorithms. MIT Press.MATH
50.
Zurück zum Zitat Li, R., Verhagen, W. J., & Curran, R. (2020). A systematic methodology for prognostic and health management system architecture definition. Reliability Engineering & System Safety, 193, 106598. Li, R., Verhagen, W. J., & Curran, R. (2020). A systematic methodology for prognostic and health management system architecture definition. Reliability Engineering & System Safety, 193, 106598.
51.
Zurück zum Zitat Barbieri, G., Sanchez-Londoño, D., Cattaneo, L., Fumagalli, L., & Romero, D. (2020). A case study for problem-based learning education in fault diagnosis assessment. IFAC-Papers Online, 53, 107–112. Barbieri, G., Sanchez-Londoño, D., Cattaneo, L., Fumagalli, L., & Romero, D. (2020). A case study for problem-based learning education in fault diagnosis assessment. IFAC-Papers Online, 53, 107–112.
52.
Zurück zum Zitat Borgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31. Borgia, E. (2014). The internet of things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.
53.
Zurück zum Zitat Romero, N., Medrano, R., Garces, K., Sanchez-Londono, D., & Barbieri, G. (2021). XRepo 2.0: A big data information system for education in prognostics and health management. International Journal of Prognostics and Health Management, 12. Romero, N., Medrano, R., Garces, K., Sanchez-Londono, D., & Barbieri, G. (2021). XRepo 2.0: A big data information system for education in prognostics and health management. International Journal of Prognostics and Health Management, 12.
54.
Zurück zum Zitat Ardila, A., Martinez, F., Garces, K., Barbieri, G., Sanchez-Londono, D., Caielli, A., Cattaneo, L., & Fumagalli, L. (2020). XRepo-towards an information system for prognostics and health management analysis. Procedia Manufacturing, 42, 146–153. Ardila, A., Martinez, F., Garces, K., Barbieri, G., Sanchez-Londono, D., Caielli, A., Cattaneo, L., & Fumagalli, L. (2020). XRepo-towards an information system for prognostics and health management analysis. Procedia Manufacturing, 42, 146–153.
55.
Zurück zum Zitat Lee, C. G., & Park, S. C. (2014). Survey on the virtual commissioning of manufacturing systems. Journal of Computational Design and Engineering, 1(3), 213–222. Lee, C. G., & Park, S. C. (2014). Survey on the virtual commissioning of manufacturing systems. Journal of Computational Design and Engineering, 1(3), 213–222.
56.
Zurück zum Zitat Hofmann, W., Langer, S., Lang, S., & Reggelin, T. (2017). Integrating virtual commissioning based on high level emulation into logistics education. Procedia Engineering, 178, 24–32. Hofmann, W., Langer, S., Lang, S., & Reggelin, T. (2017). Integrating virtual commissioning based on high level emulation into logistics education. Procedia Engineering, 178, 24–32.
57.
Zurück zum Zitat Mortensen, S. T., & Madsen, O. (2018). A virtual commissioning learning platform. Procedia Manufacturing, 23, 93–98. Mortensen, S. T., & Madsen, O. (2018). A virtual commissioning learning platform. Procedia Manufacturing, 23, 93–98.
Metadaten
Titel
Digital Twin and Education in Manufacturing
verfasst von
Giacomo Barbieri
David Sanchez-Londoño
David Andres Gutierrez
Rafael Vigon
Elisa Negri
Luca Fumagalli
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-21343-4_35

Premium Partner