Skip to main content

09.02.2023

Effect of Interrupted Quenching on the Microstructure, Mechanical Properties and Dislocation Density of Steel AISI 4340

verfasst von: Burak Nalcaci, Omer Cihad Aydin, Salih Yilmaz, Volkan Kilicli

Erschienen in: Metal Science and Heat Treatment

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of interrupted quenching on the microstructure, mechanical properties and dislocation density of steel AISI 4340 is studied. Metallographic and x-ray diffraction analyses are performed. Tensile tests are conducted. The Vickers hardness is measured. The dislocation density is calculated. The effect of the duration of the hold at 300°C during the interrupted quenching on the structure and properties of the steel is considered. It is shown that a duplex structure represented chiefly by martensite and bainite forms after interrupted quenching by all the variants studied. The duplex structure affects positively the properties of steel AISI 4340. The dislocation density, the ultimate strength and the hardness are the highest in the steel containing 34.7% bainite, 55% martensite and 10.3% retained austenite after the interrupted quenching at 300°C with a 5-min hold.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Marques, R. A. Souza, G. A. M. Pinto, et al.,“Evaluation of the softening mechanisms of AISI 4340 structural steel using hot torsion test,” J. Mater. Res. Technol., 9(5), 10886 – 10900 (2020).CrossRef A. Marques, R. A. Souza, G. A. M. Pinto, et al.,“Evaluation of the softening mechanisms of AISI 4340 structural steel using hot torsion test,” J. Mater. Res. Technol., 9(5), 10886 – 10900 (2020).CrossRef
2.
Zurück zum Zitat M. Manokaran, A. S. Kashinath, J. S. Jha, et al., “Influence of tempering in different melting routes on toughness behavior of AISI 4340 steel,” J. Mater. Eng. Perform., 29, 6748 – 6760 (2020).CrossRef M. Manokaran, A. S. Kashinath, J. S. Jha, et al., “Influence of tempering in different melting routes on toughness behavior of AISI 4340 steel,” J. Mater. Eng. Perform., 29, 6748 – 6760 (2020).CrossRef
3.
Zurück zum Zitat M. A. Ryder, C. J. Montgomer, M. J. Brand, et al., “Melt pool and heat treatment optimization for the fabrication of high-strength and high-toughness additively manufactured 4340 steel,” J. Mater. Eng. Perform., 30, 5426 – 5440 (2021).CrossRef M. A. Ryder, C. J. Montgomer, M. J. Brand, et al., “Melt pool and heat treatment optimization for the fabrication of high-strength and high-toughness additively manufactured 4340 steel,” J. Mater. Eng. Perform., 30, 5426 – 5440 (2021).CrossRef
4.
Zurück zum Zitat S. M. Safi and M. K. Besharati Givi, “A new step heat treatment for steel AISI 4340,” Met. Sci. Heat Treat., 56, 78 – 80 (2014). S. M. Safi and M. K. Besharati Givi, “A new step heat treatment for steel AISI 4340,” Met. Sci. Heat Treat., 56, 78 – 80 (2014).
5.
Zurück zum Zitat Y. Li, F. Zhang, C. Chen et al., “Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics,” Mater. Sci. Eng. A, 651, 945 – 950 (2016).CrossRef Y. Li, F. Zhang, C. Chen et al., “Effects of deformation on the microstructures and mechanical properties of carbide-free bainitic steel for railway crossing and its hydrogen embrittlement characteristics,” Mater. Sci. Eng. A, 651, 945 – 950 (2016).CrossRef
6.
Zurück zum Zitat K. Wang, Z. Tan, G. Gao, et al., “Microstructure-property relationship in bainitic steel: The effect of austempering,” Mater. Sci. Eng. A, 675, 120 – 127 (2016).CrossRef K. Wang, Z. Tan, G. Gao, et al., “Microstructure-property relationship in bainitic steel: The effect of austempering,” Mater. Sci. Eng. A, 675, 120 – 127 (2016).CrossRef
7.
Zurück zum Zitat T. S.Wang, J. Yang, C. J. Shang, et al., “Microstructures and impact toughness of low-alloy high-carbon steel austempered at low temperature,” Scr. Mater., 61, 434 – 437 (2009).CrossRef T. S.Wang, J. Yang, C. J. Shang, et al., “Microstructures and impact toughness of low-alloy high-carbon steel austempered at low temperature,” Scr. Mater., 61, 434 – 437 (2009).CrossRef
8.
Zurück zum Zitat O. Heidary, O. Mirzaee, A. Honarbakhsh Raouf, and E. Borhani, “Texture development during austempering process of an AISI 4130 steel,” Mater. Sci. Eng. A, 793, 139751 (2020). O. Heidary, O. Mirzaee, A. Honarbakhsh Raouf, and E. Borhani, “Texture development during austempering process of an AISI 4130 steel,” Mater. Sci. Eng. A, 793, 139751 (2020).
9.
Zurück zum Zitat W. S. Lee and T. T. Su, “Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions,” J. Mater. Process. Technol., 87, 198 – 206 (1999).CrossRef W. S. Lee and T. T. Su, “Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions,” J. Mater. Process. Technol., 87, 198 – 206 (1999).CrossRef
10.
Zurück zum Zitat J. M. Tartaglia and K. L. Hayrynen, “Comparison of fatigue properties of austempered versus quenched and tempered 4340 steel,” J. Mater. Eng. Perform., 21, 1008 – 1024 (2012).CrossRef J. M. Tartaglia and K. L. Hayrynen, “Comparison of fatigue properties of austempered versus quenched and tempered 4340 steel,” J. Mater. Eng. Perform., 21, 1008 – 1024 (2012).CrossRef
11.
Zurück zum Zitat A. Salemi and A. Abdollah-zadeh, “The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel,” Mater. Charact., 59, 484 – 487 (2008).CrossRef A. Salemi and A. Abdollah-zadeh, “The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel,” Mater. Charact., 59, 484 – 487 (2008).CrossRef
12.
Zurück zum Zitat J. M. Tartaglia, K. A. Lazzari, G. P. Hui, and K. L. Hayrynen, “A comparison of mechanical properties and hydrogen embrittlement resistance of austempered vs quenched and tempered 4340 steel,” Metall. Mater. Trans. A, 39, 559 – 576 (2008).CrossRef J. M. Tartaglia, K. A. Lazzari, G. P. Hui, and K. L. Hayrynen, “A comparison of mechanical properties and hydrogen embrittlement resistance of austempered vs quenched and tempered 4340 steel,” Metall. Mater. Trans. A, 39, 559 – 576 (2008).CrossRef
13.
Zurück zum Zitat X. Han, Z. Zhang, Y. Rong, S. J. Trush, et al., “Bainite kinetic transformation of austempered AISI 6150 steel,” J. Mater. Res. Technol., 9, 1357 – 1364 (2020).CrossRef X. Han, Z. Zhang, Y. Rong, S. J. Trush, et al., “Bainite kinetic transformation of austempered AISI 6150 steel,” J. Mater. Res. Technol., 9, 1357 – 1364 (2020).CrossRef
14.
Zurück zum Zitat J. Yang, T. S.Wang, B. Zhang, and F. C. Zhang, “Microstructure and mechanical properties of high-carbon Si – Al-rich steel by low-temperature austempering,” Mater. Des., 35, 170 – 174 (2012).CrossRef J. Yang, T. S.Wang, B. Zhang, and F. C. Zhang, “Microstructure and mechanical properties of high-carbon Si – Al-rich steel by low-temperature austempering,” Mater. Des., 35, 170 – 174 (2012).CrossRef
15.
Zurück zum Zitat M. M. Bilal, K. Yaqoob, M. H. Zahid et al., “Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels,” J. Mater. Res. Technol., 8, 5194 – 5200 (2019).CrossRef M. M. Bilal, K. Yaqoob, M. H. Zahid et al., “Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels,” J. Mater. Res. Technol., 8, 5194 – 5200 (2019).CrossRef
16.
Zurück zum Zitat N. G. Kolbasnikov, M. S. Sakharov, S. A. Kuzin, and V. S. Teteryatnikov, “Stability of untransformed austenite in M/A phase of bainitic structure of low-carbon steel,” Met. Sci. Heat Treat., 63, 63 – 69 (2021).CrossRef N. G. Kolbasnikov, M. S. Sakharov, S. A. Kuzin, and V. S. Teteryatnikov, “Stability of untransformed austenite in M/A phase of bainitic structure of low-carbon steel,” Met. Sci. Heat Treat., 63, 63 – 69 (2021).CrossRef
17.
Zurück zum Zitat A. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Mater. Sci. Eng. A, 474, 270 – 282 (2008).CrossRef A. Kumar, S. B. Singh, and K. K. Ray, “Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels,” Mater. Sci. Eng. A, 474, 270 – 282 (2008).CrossRef
18.
Zurück zum Zitat Y. Tomita and K. Okabayashi, “Mechanical properties of 0.40 pct C – Ni – Cr – Mo high strength steel having a mixed structure of martensite and bainite,” Metall. Trans. A, 16, 73 – 82 (1985).CrossRef Y. Tomita and K. Okabayashi, “Mechanical properties of 0.40 pct C – Ni – Cr – Mo high strength steel having a mixed structure of martensite and bainite,” Metall. Trans. A, 16, 73 – 82 (1985).CrossRef
19.
Zurück zum Zitat S. K. Putatunda, C. Martis, and J. Boileau, “Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel,” Mater. Sci. Eng. A, 528, 5053 – 5059 (2011).CrossRef S. K. Putatunda, C. Martis, and J. Boileau, “Influence of austempering temperature on the mechanical properties of a low carbon low alloy steel,” Mater. Sci. Eng. A, 528, 5053 – 5059 (2011).CrossRef
20.
Zurück zum Zitat W. Liu, Y. Jiang, H. Guo, et al., “Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature,” Int. J. Miner. Metall. Mater., 27, 483 – 493 (2020).CrossRef W. Liu, Y. Jiang, H. Guo, et al., “Mechanical properties and wear resistance of ultrafine bainitic steel under low austempering temperature,” Int. J. Miner. Metall. Mater., 27, 483 – 493 (2020).CrossRef
21.
Zurück zum Zitat G. P. Anastasiadi, S. Yu. Kondrat’ev, V. A. Malyshevskii, and M. V. Sil’nikov, “Importance of thermokinetic diagrams of transformation of supercooled austenite for development of heat treatment modes for critical steel parts,” Met. Sci. Heat Treat., 58(11), 656 – 661 (2017). G. P. Anastasiadi, S. Yu. Kondrat’ev, V. A. Malyshevskii, and M. V. Sil’nikov, “Importance of thermokinetic diagrams of transformation of supercooled austenite for development of heat treatment modes for critical steel parts,” Met. Sci. Heat Treat., 58(11), 656 – 661 (2017).
22.
Zurück zum Zitat S. Yu. Kondrat’ev, O. G. Zotov, G. Ya. Yaroslavskii, et al., “Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation,” Prob. Prochn., 14B(3), 79 – 82 (1983). S. Yu. Kondrat’ev, O. G. Zotov, G. Ya. Yaroslavskii, et al., “Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation,” Prob. Prochn., 14B(3), 79 – 82 (1983).
23.
Zurück zum Zitat Q. Li, Y. Zhang, W. Li et al., “Improved mechanical properties of a quenched and partitioned medium-carbon bainitic steel by control of bainitic isothermal transformation,” J. Mater. Eng. Perform., 29, 32 – 41 (2020).CrossRef Q. Li, Y. Zhang, W. Li et al., “Improved mechanical properties of a quenched and partitioned medium-carbon bainitic steel by control of bainitic isothermal transformation,” J. Mater. Eng. Perform., 29, 32 – 41 (2020).CrossRef
24.
Zurück zum Zitat J. Macchi, S. Gaudez, G. Geandier, et al., “Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy x-ray diffraction,” Mater. Sci. Eng. A., 800, 140249 (2021).CrossRef J. Macchi, S. Gaudez, G. Geandier, et al., “Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy x-ray diffraction,” Mater. Sci. Eng. A., 800, 140249 (2021).CrossRef
25.
Zurück zum Zitat V. Kilicli and M. Erdogan, “The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure,” J. Mater. Eng. Perform., 19, 142 – 149 (2010).CrossRef V. Kilicli and M. Erdogan, “The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure,” J. Mater. Eng. Perform., 19, 142 – 149 (2010).CrossRef
26.
Zurück zum Zitat Y. Mou, X. Li, Z. Liet al., “Elevation of impact toughness of medium-manganese trip-steel 0.2% C – 6%Mn – 3%Al due to evolution of microstructure under heat treatment,” Met. Sci. Heat Treat., 63, 26 – 33 (2021).CrossRef Y. Mou, X. Li, Z. Liet al., “Elevation of impact toughness of medium-manganese trip-steel 0.2% C – 6%Mn – 3%Al due to evolution of microstructure under heat treatment,” Met. Sci. Heat Treat., 63, 26 – 33 (2021).CrossRef
27.
Zurück zum Zitat G. Niu, Q. Tang, H. S. Zurob et al., “Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains,” Mater. Sci. Eng. A, 759, 1 – 10 (2019).CrossRef G. Niu, Q. Tang, H. S. Zurob et al., “Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains,” Mater. Sci. Eng. A, 759, 1 – 10 (2019).CrossRef
28.
Zurück zum Zitat J. Wen, Q. Li, and Y. Long, “Effect of austempering on microstructure and mechanical properties of a GCr18Mo steel,” Mater. Sci. Eng. A, 438 – 440, 251 – 253 (2006).CrossRef J. Wen, Q. Li, and Y. Long, “Effect of austempering on microstructure and mechanical properties of a GCr18Mo steel,” Mater. Sci. Eng. A, 438440, 251 – 253 (2006).CrossRef
29.
Zurück zum Zitat K. Abbaszadeh, H. Saghafian, and S. Kheirandish, “Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel,” J. Mater. Sci. Technol., 28, 336 – 342 (2012).CrossRef K. Abbaszadeh, H. Saghafian, and S. Kheirandish, “Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel,” J. Mater. Sci. Technol., 28, 336 – 342 (2012).CrossRef
30.
Zurück zum Zitat N. Saeidi and A. Ekrami. “Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels,” Mater. Sci. Eng. A, 523, 125(129 (2009). N. Saeidi and A. Ekrami. “Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels,” Mater. Sci. Eng. A, 523, 125(129 (2009).
31.
Zurück zum Zitat T. G. Sousa, S. B. Diniz, A. L. Pinto, and L. P. Brandao, “Dislocation density by x-ray diffraction in α brass deformed by rolling and ECAE,” Mater. Res., 18, 246 – 249 (2015).CrossRef T. G. Sousa, S. B. Diniz, A. L. Pinto, and L. P. Brandao, “Dislocation density by x-ray diffraction in α brass deformed by rolling and ECAE,” Mater. Res., 18, 246 – 249 (2015).CrossRef
32.
Zurück zum Zitat S. Takebayashl, T. Kunieda, N. Yoshinaga et al., “Comparison of the dislocation density in martensitic steels evaluated by some x-ray diffraction methods,” ISIJ Int., 50, 875(882 (2010). S. Takebayashl, T. Kunieda, N. Yoshinaga et al., “Comparison of the dislocation density in martensitic steels evaluated by some x-ray diffraction methods,” ISIJ Int., 50, 875(882 (2010).
33.
Zurück zum Zitat A. S. Hassanien and A. S. Akl, “Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films,” Phys. B Condens. Matter., 473, 11 – 19 (2015).CrossRef A. S. Hassanien and A. S. Akl, “Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films,” Phys. B Condens. Matter., 473, 11 – 19 (2015).CrossRef
34.
Zurück zum Zitat T. Vershinina and M. Leont’eva-Smirnova, “Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel,” Mater. Charact., 125, 23 – 28 (2017). T. Vershinina and M. Leont’eva-Smirnova, “Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel,” Mater. Charact., 125, 23 – 28 (2017).
35.
Zurück zum Zitat T. Zhou, J. Lu, and P. Hedström, “Mechanical behavior of fresh and tempered martensite in a CrMoV-alloyed steel explained by microstructural evolution and strength modeling,” Metall. Mater. Trans. A, 51, 5077 – 5087 (2020).CrossRef T. Zhou, J. Lu, and P. Hedström, “Mechanical behavior of fresh and tempered martensite in a CrMoV-alloyed steel explained by microstructural evolution and strength modeling,” Metall. Mater. Trans. A, 51, 5077 – 5087 (2020).CrossRef
36.
Zurück zum Zitat R. Kishor, L. Sahu, K. Dutta, and A. K. Mondal, “Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using x-ray diffraction profile analysis,” Mater. Sci. Eng. A, 598, 299 – 303 (2014).CrossRef R. Kishor, L. Sahu, K. Dutta, and A. K. Mondal, “Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using x-ray diffraction profile analysis,” Mater. Sci. Eng. A, 598, 299 – 303 (2014).CrossRef
37.
Zurück zum Zitat ASTM A. E975, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1, ASTM (2013), pp. 1 – 7. ASTM A. E975, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1, ASTM (2013), pp. 1 – 7.
38.
Zurück zum Zitat H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji, “Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using in-situ x-ray diffraction technique,” Mater. Trans., 56, 671 – 678 (2015).CrossRef H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji, “Evaluation of dislocation density for 1100 aluminum with different grain size during tensile deformation by using in-situ x-ray diffraction technique,” Mater. Trans., 56, 671 – 678 (2015).CrossRef
39.
Zurück zum Zitat G. F. Vander Voort, “Color metallography,” in: Microsc. Microanal., ASM Handbook International, Materials Park, Ohio (2004), Vol. 9, pp. 493 – 512. G. F. Vander Voort, “Color metallography,” in: Microsc. Microanal., ASM Handbook International, Materials Park, Ohio (2004), Vol. 9, pp. 493 – 512.
40.
Zurück zum Zitat S. Morito, J. Nishikawa, and T. Maki, “Dislocation density within lath martensite in Fe – C and Fe – Ni alloys,” ISIJ Int., 43, 1475 – 1477 (2003).CrossRef S. Morito, J. Nishikawa, and T. Maki, “Dislocation density within lath martensite in Fe – C and Fe – Ni alloys,” ISIJ Int., 43, 1475 – 1477 (2003).CrossRef
41.
Zurück zum Zitat M. Kehoe and P. M. Kelly, “The role of carbon in the strength of ferrous martensite,” Scr. Metall., 4, 473 – 476 (1970).CrossRef M. Kehoe and P. M. Kelly, “The role of carbon in the strength of ferrous martensite,” Scr. Metall., 4, 473 – 476 (1970).CrossRef
42.
Zurück zum Zitat L. Å. Norström, “The relation between microstructure and yield strength in tempered low-carbon lath martensite with 5% nickel,” Met. Sci., 10, 429 – 436 (1976).CrossRef L. Å. Norström, “The relation between microstructure and yield strength in tempered low-carbon lath martensite with 5% nickel,” Met. Sci., 10, 429 – 436 (1976).CrossRef
43.
Zurück zum Zitat H. K. D. H. Bhadeshia, “The bainite transformation: Unresolved issues,” Mater. Sci. Eng. A, 273 – 275, 58 – 66 (1999).CrossRef H. K. D. H. Bhadeshia, “The bainite transformation: Unresolved issues,” Mater. Sci. Eng. A, 273275, 58 – 66 (1999).CrossRef
44.
Zurück zum Zitat B. Avishan, M. Tavakolian, and A. Yazdani, “A two-step austempering of high performance steel with nanoscale microstructure,” Mater. Sci. Eng. A, 693, 178 – 185 (2017).CrossRef B. Avishan, M. Tavakolian, and A. Yazdani, “A two-step austempering of high performance steel with nanoscale microstructure,” Mater. Sci. Eng. A, 693, 178 – 185 (2017).CrossRef
45.
Zurück zum Zitat J. G. Zhu, X. Sun, and G. C. Barber, “Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel,” Metals (Basel), 10, 236 (2020). J. G. Zhu, X. Sun, and G. C. Barber, “Bainite transformation-kinetics-microstructure characterization of austempered 4140 steel,” Metals (Basel), 10, 236 (2020).
Metadaten
Titel
Effect of Interrupted Quenching on the Microstructure, Mechanical Properties and Dislocation Density of Steel AISI 4340
verfasst von
Burak Nalcaci
Omer Cihad Aydin
Salih Yilmaz
Volkan Kilicli
Publikationsdatum
09.02.2023
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-023-00843-z

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.