Skip to main content

18.05.2024

Enhanced Epileptic Seizure Detection Through Graph Spectral Analysis of EEG Signals

verfasst von: Ramnivas Sharma, Hemant Kumar Meena

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epilepsy is a persistent health condition marked by unusual and highly synchronized electrical activity in the brain cells, resulting in recurring seizures. This paper proposes a novel real-time method to improve the detection of seizures using the spectral features of non-stationary electroencephalogram (EEG) signals. It is observed that the discrete wavelet transform (DWT)-based features do not consider the interrelationship among EEG signal components. This interrelationship has been well captured by the novel representation of EEG in the form of graph signals. Here, the spectral analysis of the graph signals is investigated by the graph-based Fourier transform (GFT). Then, GFT-based features have been selected and fed into different classifiers for analysis. The seizure detection rate in two publicly available EEG-based datasets, the University of Bonn (UB) and the Neurology Sleep Clinic New Delhi (NSC-ND), have been achieved with accuracy of 98.68% and 96.84%, respectively. The accuracy achieved is significantly better than the existing state-of-the-art techniques. This approach demonstrates the impact of utilizing the interrelationship among the EEG components, followed by enhanced feature selection based on GFT for the improved detection of seizures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat U.R. Acharya, F. Molinari, S.V. Sree, S. Chattopadhyay, K.-H. Ng, J.S. Suri, Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)CrossRef U.R. Acharya, F. Molinari, S.V. Sree, S. Chattopadhyay, K.-H. Ng, J.S. Suri, Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)CrossRef
2.
Zurück zum Zitat U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)CrossRef U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)CrossRef
3.
Zurück zum Zitat B. Akbarian, A. Erfanian, A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network. Biomed. Signal Process. Control 59, 101878 (2020)CrossRef B. Akbarian, A. Erfanian, A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network. Biomed. Signal Process. Control 59, 101878 (2020)CrossRef
4.
Zurück zum Zitat R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)CrossRef R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)CrossRef
5.
Zurück zum Zitat A. Anuragi, D.S. Sisodia, R.B. Pachori, Automated fbse-ewt based learning framework for detection of epileptic seizures using time-segmented EEG signals. Comput. Biol. Med. 136, 104708 (2021)CrossRef A. Anuragi, D.S. Sisodia, R.B. Pachori, Automated fbse-ewt based learning framework for detection of epileptic seizures using time-segmented EEG signals. Comput. Biol. Med. 136, 104708 (2021)CrossRef
6.
Zurück zum Zitat S.M. Beeraka, A. Kumar, M. Sameer, S. Ghosh, B. Gupta, Accuracy enhancement of epileptic seizure detection: a deep learning approach with hardware realization of stft. Circuits Syst. Signal Process. 41, 461–484 (2022)CrossRef S.M. Beeraka, A. Kumar, M. Sameer, S. Ghosh, B. Gupta, Accuracy enhancement of epileptic seizure detection: a deep learning approach with hardware realization of stft. Circuits Syst. Signal Process. 41, 461–484 (2022)CrossRef
7.
Zurück zum Zitat W. Bomela, S. Wang, C.-A. Chou, J.-S. Li, Real-time inference and detection of disruptive EEG networks for epileptic seizures. Sci. Rep. 10(1), 8653 (2020)CrossRef W. Bomela, S. Wang, C.-A. Chou, J.-S. Li, Real-time inference and detection of disruptive EEG networks for epileptic seizures. Sci. Rep. 10(1), 8653 (2020)CrossRef
8.
Zurück zum Zitat M. Chakraborty, D. Mitra et al., Epilepsy seizure detection using kurtosis based vmd’s parameters selection and bandwidth features. Biomed. Signal Process. Control 64, 102255 (2021)CrossRef M. Chakraborty, D. Mitra et al., Epilepsy seizure detection using kurtosis based vmd’s parameters selection and bandwidth features. Biomed. Signal Process. Control 64, 102255 (2021)CrossRef
9.
Zurück zum Zitat G. Chen, Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst. Appl. 41(5), 2391–2394 (2014)CrossRef G. Chen, Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst. Appl. 41(5), 2391–2394 (2014)CrossRef
10.
Zurück zum Zitat T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system, in proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, (San Francisco, California, 2016) pp. 785–794 T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system, in proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, (San Francisco, California, 2016) pp. 785–794
11.
Zurück zum Zitat M. Cheung, J. Shi, O. Wright, L.Y. Jiang, X. Liu, J.M. Moura, Graph signal processing and deep learning: convolution, pooling, and topology. IEEE Signal Process. Mag. 37(6), 139–149 (2020)CrossRef M. Cheung, J. Shi, O. Wright, L.Y. Jiang, X. Liu, J.M. Moura, Graph signal processing and deep learning: convolution, pooling, and topology. IEEE Signal Process. Mag. 37(6), 139–149 (2020)CrossRef
12.
Zurück zum Zitat N. Darjani, H. Omranpour, Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method. Knowl.-Based Syst. 205, 106276 (2020)CrossRef N. Darjani, H. Omranpour, Phase space elliptic density feature for epileptic EEG signals classification using metaheuristic optimization method. Knowl.-Based Syst. 205, 106276 (2020)CrossRef
13.
Zurück zum Zitat M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29 (2016) M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29 (2016)
14.
Zurück zum Zitat N. Fatma, P. Singh, and M. K. Siddiqui. An in-depth examination of machine learning approaches for detecting epileptic seizures, in 2024 International Conference on Automation and Computation (AUTOCOM), (IEEE, 2024) pp. 507–511 N. Fatma, P. Singh, and M. K. Siddiqui. An in-depth examination of machine learning approaches for detecting epileptic seizures, in 2024 International Conference on Automation and Computation (AUTOCOM), (IEEE, 2024) pp. 507–511
15.
Zurück zum Zitat P. Ghaderyan, A. Abbasi, M.H. Sedaaghi, An efficient seizure prediction method using knn-based undersampling and linear frequency measures. J. Neurosci. Methods 232, 134–142 (2014)CrossRef P. Ghaderyan, A. Abbasi, M.H. Sedaaghi, An efficient seizure prediction method using knn-based undersampling and linear frequency measures. J. Neurosci. Methods 232, 134–142 (2014)CrossRef
16.
Zurück zum Zitat V. Gupta, R.B. Pachori, Epileptic seizure identification using entropy of fbse based EEG rhythms. Biomed. Signal Process. Control 53, 101569 (2019)CrossRef V. Gupta, R.B. Pachori, Epileptic seizure identification using entropy of fbse based EEG rhythms. Biomed. Signal Process. Control 53, 101569 (2019)CrossRef
17.
Zurück zum Zitat U. Herwig, P. Satrapi, C. Schönfeldt-Lecuona, Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 16, 95–99 (2003)CrossRef U. Herwig, P. Satrapi, C. Schönfeldt-Lecuona, Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 16, 95–99 (2003)CrossRef
18.
Zurück zum Zitat M.-P. Hosseini, A. Hosseini, K. Ahi, A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 14, 204–218 (2020)CrossRef M.-P. Hosseini, A. Hosseini, K. Ahi, A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 14, 204–218 (2020)CrossRef
19.
Zurück zum Zitat M. Hossin, M.N. Sulaiman, A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)CrossRef M. Hossin, M.N. Sulaiman, A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)CrossRef
20.
Zurück zum Zitat W. Hu, J. Cao, X. Lai, J. Liu, Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks. J. Ambient Intell. Hum. Comput. 14(11), 15485–15495 (2019)CrossRef W. Hu, J. Cao, X. Lai, J. Liu, Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks. J. Ambient Intell. Hum. Comput. 14(11), 15485–15495 (2019)CrossRef
21.
Zurück zum Zitat S. Jang, S.-E. Moon, and J.-S. Lee. EEG-based video identification using graph signal modeling and graph convolutional neural network, in 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), (IEEE, 2018), pp. 3066–3070 S. Jang, S.-E. Moon, and J.-S. Lee. EEG-based video identification using graph signal modeling and graph convolutional neural network, in 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), (IEEE, 2018), pp. 3066–3070
22.
Zurück zum Zitat K. Jindal, R. Upadhyay, H.S. Singh, Application of tunable-q wavelet transform based nonlinear features in epileptic seizure detection. Analog Integr. Circ. Sig. Process 100, 437–452 (2019)CrossRef K. Jindal, R. Upadhyay, H.S. Singh, Application of tunable-q wavelet transform based nonlinear features in epileptic seizure detection. Analog Integr. Circ. Sig. Process 100, 437–452 (2019)CrossRef
23.
Zurück zum Zitat J. Jing, X. Pang, Z. Pan, F. Fan, Z. Meng, Classification and identification of epileptic EEG signals based on signal enhancement. Biomed. Signal Process. Control 71, 103248 (2022)CrossRef J. Jing, X. Pang, Z. Pan, F. Fan, Z. Meng, Classification and identification of epileptic EEG signals based on signal enhancement. Biomed. Signal Process. Control 71, 103248 (2022)CrossRef
24.
Zurück zum Zitat V. Joshi, R.B. Pachori, A. Vijesh, Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014)CrossRef V. Joshi, R.B. Pachori, A. Vijesh, Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014)CrossRef
25.
Zurück zum Zitat A.A. Khalil, M.I. El Sayeid, F.E. Ibrahim, A.A. Khalaf, E. Gemeay, H. Kasem, S.E.A. Khamis, G.M. El-Banby, W. El-Shafai, E.-S.M. El-Rabaie et al., Efficient frameworks for statistical seizure detection and prediction. J. Supercomput. 79(16), 17824–17858 (2023)CrossRef A.A. Khalil, M.I. El Sayeid, F.E. Ibrahim, A.A. Khalaf, E. Gemeay, H. Kasem, S.E.A. Khamis, G.M. El-Banby, W. El-Shafai, E.-S.M. El-Rabaie et al., Efficient frameworks for statistical seizure detection and prediction. J. Supercomput. 79(16), 17824–17858 (2023)CrossRef
26.
Zurück zum Zitat A. Khosla, P. Khandnor, T. Chand, A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 40(2), 649–690 (2020)CrossRef A. Khosla, P. Khandnor, T. Chand, A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 40(2), 649–690 (2020)CrossRef
27.
Zurück zum Zitat R. Li, X. Yuan, M. Radfar, P. Marendy, W. Ni, T.J. O’Brien, P.M. Casillas-Espinosa, Graph signal processing, graph neural network and graph learning on biological data: a systematic review. IEEE Rev. Biomed. Eng. 16, 109–135 (2021)CrossRef R. Li, X. Yuan, M. Radfar, P. Marendy, W. Ni, T.J. O’Brien, P.M. Casillas-Espinosa, Graph signal processing, graph neural network and graph learning on biological data: a systematic review. IEEE Rev. Biomed. Eng. 16, 109–135 (2021)CrossRef
29.
Zurück zum Zitat J. Mateo-Sotos, A. Torres, J. Santos, O. Quevedo, C. Basar, A machine learning-based method to identify bipolar disorder patients. Circuits Syst. Signal Process. 41(4), 2244–2265 (2022)CrossRef J. Mateo-Sotos, A. Torres, J. Santos, O. Quevedo, C. Basar, A machine learning-based method to identify bipolar disorder patients. Circuits Syst. Signal Process. 41(4), 2244–2265 (2022)CrossRef
30.
Zurück zum Zitat P. Mathur and V. K. Chakka. Graph signal processing of EEG signals for detection of epilepsy, in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), (IEEE, 2020), pp. 839–843 P. Mathur and V. K. Chakka. Graph signal processing of EEG signals for detection of epilepsy, in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), (IEEE, 2020), pp. 839–843
31.
Zurück zum Zitat M. Nourelahi, A. Zamani, A. Talei, S. Tahmasebi, A model to predict breast cancer survivability using logistic regression. Middle East J. Cancer 10(2), 132–138 (2019) M. Nourelahi, A. Zamani, A. Talei, S. Tahmasebi, A model to predict breast cancer survivability using logistic regression. Middle East J. Cancer 10(2), 132–138 (2019)
32.
Zurück zum Zitat M. Omidvar, A. Zahedi, H. Bakhshi, EEG signal processing for epilepsy seizure detection using 5-level db4 discrete wavelet transform, ga-based feature selection and ann/svm classifiers. J. Ambient Intell. Hum. Comput. 12(11), 10395–10403 (2021)CrossRef M. Omidvar, A. Zahedi, H. Bakhshi, EEG signal processing for epilepsy seizure detection using 5-level db4 discrete wavelet transform, ga-based feature selection and ann/svm classifiers. J. Ambient Intell. Hum. Comput. 12(11), 10395–10403 (2021)CrossRef
33.
Zurück zum Zitat R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert–Huang transform. Biomed. Eng. Online 10, 1–15 (2011)CrossRef R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert–Huang transform. Biomed. Eng. Online 10, 1–15 (2011)CrossRef
34.
Zurück zum Zitat H. Peng, C. Lei, S. Zheng, C. Zhao, C. Wu, J. Sun, B. Hu, Automatic epileptic seizure detection via stein kernel-based sparse representation. Comput. Biol. Med. 132, 104338 (2021)CrossRef H. Peng, C. Lei, S. Zheng, C. Zhao, C. Wu, J. Sun, B. Hu, Automatic epileptic seizure detection via stein kernel-based sparse representation. Comput. Biol. Med. 132, 104338 (2021)CrossRef
35.
Zurück zum Zitat S. Poorani, P. Balasubramanie, Seizure detection based on EEG signals using asymmetrical back propagation neural network method. Circuits Syst. Signal Process. 40(9), 4614–4632 (2021)CrossRef S. Poorani, P. Balasubramanie, Seizure detection based on EEG signals using asymmetrical back propagation neural network method. Circuits Syst. Signal Process. 40(9), 4614–4632 (2021)CrossRef
36.
Zurück zum Zitat S.M. Qaisar, S.F. Hussain, Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput. Methods Programs Biomed. 203, 106034 (2021)CrossRef S.M. Qaisar, S.F. Hussain, Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput. Methods Programs Biomed. 203, 106034 (2021)CrossRef
37.
Zurück zum Zitat X. Qin, D. Xu, X. Dong, X. Cui, S. Zhang, EEG signal classification based on improved variational mode decomposition and deep forest. Biomed. Signal Process. Control 83, 104644 (2023)CrossRef X. Qin, D. Xu, X. Dong, X. Cui, S. Zhang, EEG signal classification based on improved variational mode decomposition and deep forest. Biomed. Signal Process. Control 83, 104644 (2023)CrossRef
38.
Zurück zum Zitat K. Rasheed, A. Qayyum, J. Qadir, S. Sivathamboo, P. Kwan, L. Kuhlmann, T. O’Brien, A. Razi, Machine learning for predicting epileptic seizures using EEG signals: a review. IEEE Rev. Biomed. Eng. 14, 139–155 (2020)CrossRef K. Rasheed, A. Qayyum, J. Qadir, S. Sivathamboo, P. Kwan, L. Kuhlmann, T. O’Brien, A. Razi, Machine learning for predicting epileptic seizures using EEG signals: a review. IEEE Rev. Biomed. Eng. 14, 139–155 (2020)CrossRef
39.
Zurück zum Zitat E.A. Refaee, S. Shamsudheen, A computing system that integrates deep learning and the internet of things for effective disease diagnosis in smart health care systems. J. Supercomput. 78(7), 9285–9306 (2022)CrossRef E.A. Refaee, S. Shamsudheen, A computing system that integrates deep learning and the internet of things for effective disease diagnosis in smart health care systems. J. Supercomput. 78(7), 9285–9306 (2022)CrossRef
40.
Zurück zum Zitat S.K. Rout, P.K. Biswal, An efficient error-minimized random vector functional link network for epileptic seizure classification using vmd. Biomed. Signal Process. Control 57, 101787 (2020)CrossRef S.K. Rout, P.K. Biswal, An efficient error-minimized random vector functional link network for epileptic seizure classification using vmd. Biomed. Signal Process. Control 57, 101787 (2020)CrossRef
41.
Zurück zum Zitat S. Rukmawan, F. Aszhari, Z. Rustam, J. Pandelaki, Cerebral infarction classification using the k-nearest neighbor and naive Bayes classifier. J. Phys. Conf. Ser. 1752, 012045 (2021)CrossRef S. Rukmawan, F. Aszhari, Z. Rustam, J. Pandelaki, Cerebral infarction classification using the k-nearest neighbor and naive Bayes classifier. J. Phys. Conf. Ser. 1752, 012045 (2021)CrossRef
42.
Zurück zum Zitat J. Saeedi, K. Faez, M.H. Moradi, Hybrid fractal-wavelet method for multi-channel EEG signal compression. Circuits Syst. Signal Process. 33, 2583–2604 (2014)CrossRef J. Saeedi, K. Faez, M.H. Moradi, Hybrid fractal-wavelet method for multi-channel EEG signal compression. Circuits Syst. Signal Process. 33, 2583–2604 (2014)CrossRef
43.
Zurück zum Zitat N. Sairamya, S.T. George, D.N. Ponraj, M. Subathra, Detection of epileptic eeg signal using improved local pattern transformation methods. Circuits Syst. Signal Process. 37, 5554–5575 (2018)CrossRef N. Sairamya, S.T. George, D.N. Ponraj, M. Subathra, Detection of epileptic eeg signal using improved local pattern transformation methods. Circuits Syst. Signal Process. 37, 5554–5575 (2018)CrossRef
44.
Zurück zum Zitat M. Savadkoohi, T. Oladunni, L. Thompson, A machine learning approach to epileptic seizure prediction using electroencephalogram EEG signal. Biocybern. Biomed. Eng. 40(3), 1328–1341 (2020)CrossRef M. Savadkoohi, T. Oladunni, L. Thompson, A machine learning approach to epileptic seizure prediction using electroencephalogram EEG signal. Biocybern. Biomed. Eng. 40(3), 1328–1341 (2020)CrossRef
45.
Zurück zum Zitat G. Sharma, A. Parashar, A.M. Joshi, DepHNN: a novel hybrid neural network for electroencephalogram EEG-based screening of depression. Biomed. Signal Process. Control 66, 102393 (2021)CrossRef G. Sharma, A. Parashar, A.M. Joshi, DepHNN: a novel hybrid neural network for electroencephalogram EEG-based screening of depression. Biomed. Signal Process. Control 66, 102393 (2021)CrossRef
46.
Zurück zum Zitat M. Shen, P. Wen, B. Song, Y. Li, An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods. Biomed. Signal Process. Control 77, 103820 (2022)CrossRef M. Shen, P. Wen, B. Song, Y. Li, An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods. Biomed. Signal Process. Control 77, 103820 (2022)CrossRef
47.
Zurück zum Zitat D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)CrossRef D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)CrossRef
48.
Zurück zum Zitat T. Song, W. Zheng, P. Song, Z. Cui, EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11(3), 532–541 (2018)CrossRef T. Song, W. Zheng, P. Song, Z. Cui, EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11(3), 532–541 (2018)CrossRef
49.
Zurück zum Zitat L. Stanković, M. Daković, E. Sejdić, Introduction to graph signal processing, in Vertex-frequency analysis of graph signals. ed. by L. Stanković, M. Daković, E. Sejdić (Springer, Berlin, 2019), pp.3–108CrossRef L. Stanković, M. Daković, E. Sejdić, Introduction to graph signal processing, in Vertex-frequency analysis of graph signals. ed. by L. Stanković, M. Daković, E. Sejdić (Springer, Berlin, 2019), pp.3–108CrossRef
50.
Zurück zum Zitat P. Swami, T.K. Gandhi, B.K. Panigrahi, M. Tripathi, S. Anand, A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)CrossRef P. Swami, T.K. Gandhi, B.K. Panigrahi, M. Tripathi, S. Anand, A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)CrossRef
51.
Zurück zum Zitat P. Swami, T.K. Gandhi, B.K. Panigrahi, M. Tripathi, S. Anand, A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)CrossRef P. Swami, T.K. Gandhi, B.K. Panigrahi, M. Tripathi, S. Anand, A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst. Appl. 56, 116–130 (2016)CrossRef
52.
Zurück zum Zitat P. Swami, B. Panigrahi, S. Nara, M. Bhatia, T. Gandhi. EEG epilepsy datasets. (2016c). https://doi. org/10.13140/RG,2(14280.32006) P. Swami, B. Panigrahi, S. Nara, M. Bhatia, T. Gandhi. EEG epilepsy datasets. (2016c). https://​doi.​ org/10.13140/RG,2(14280.32006)
53.
Zurück zum Zitat E. Tuncer, E.D. Bolat, Classification of epileptic seizures from electroencephalogram EEG data using bidirectional short-term memory (bi-lstm) network architecture. Biomed. Signal Process. Control 73, 103462 (2022)CrossRef E. Tuncer, E.D. Bolat, Classification of epileptic seizures from electroencephalogram EEG data using bidirectional short-term memory (bi-lstm) network architecture. Biomed. Signal Process. Control 73, 103462 (2022)CrossRef
54.
Zurück zum Zitat J. Wu, T. Zhou, T. Li, Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting. Entropy 22(2), 140 (2020)CrossRef J. Wu, T. Zhou, T. Li, Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting. Entropy 22(2), 140 (2020)CrossRef
Metadaten
Titel
Enhanced Epileptic Seizure Detection Through Graph Spectral Analysis of EEG Signals
verfasst von
Ramnivas Sharma
Hemant Kumar Meena
Publikationsdatum
18.05.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02715-0