Skip to main content
Erschienen in: Fire Technology 2/2023

12.12.2022

Investigation of 2D Soot Distribution and Characteristic Soot Volume Fraction of Flames in the Confined Compartment with a Horizontal Opening

verfasst von: Wenbin Yao, Xiao Chen, Shouxiang Lu

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To comprehensively understand the effect of horizontal opening size on the soot evolution and transportation of flames in the confined compartment, 2D soot distribution and characteristic soot volume fraction of non-premixed propane flames were theoretically and experimentally investigated in the confined compartment (0.2 m × 0.2 m × 0.2 m) with different horizontal openings (0.03 m to 0.10 m) in this work. The oxygen concentration supplied by the horizontal opening was determined by the ratio of dimensionless opening size and dimensionless flame volume within a range of 14.5% to 20.7%. Results showed that the soot distribution of non-premixed propane flames in the confined compartment with a horizontal opening complied with the classical three-zone assumption. The maximum soot volume fraction, the characteristic length of the soot formation zone and the characteristic length of the soot oxidation zone were all positively related to the dimensionless flame volume and negatively correlated with the dimensionless opening size. There was a positive correlation between the ratio of two characteristic lengths and dimensionless flame volume, and the correlation was independent of the dimensionless opening size. Moreover, a linear correlation of characteristic soot volume fraction was proposed to predict the maximum soot volume fraction of non-premixed flames in the confined compartment with a horizontal opening.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seinfeld J, Pandis S (2008) Atmospheric chemistry and physics, 1997. New York Seinfeld J, Pandis S (2008) Atmospheric chemistry and physics, 1997. New York
2.
Zurück zum Zitat Cheung SC, Yuen RK, Yeoh G, Cheng GW (2004) Contribution of soot particles on global radiative heat transfer in a two-compartment fire. Fire Saf J 39:412–428CrossRef Cheung SC, Yuen RK, Yeoh G, Cheng GW (2004) Contribution of soot particles on global radiative heat transfer in a two-compartment fire. Fire Saf J 39:412–428CrossRef
3.
Zurück zum Zitat Mahmoud S, Nathan G, Medwell P, Dally B, Alwahabi Z (2015) Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proc Combust Inst 35:1931–1938CrossRef Mahmoud S, Nathan G, Medwell P, Dally B, Alwahabi Z (2015) Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proc Combust Inst 35:1931–1938CrossRef
4.
Zurück zum Zitat Kearney SP, Grasser TW (2017) Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire. Combust Flame 186:32–44CrossRef Kearney SP, Grasser TW (2017) Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire. Combust Flame 186:32–44CrossRef
5.
Zurück zum Zitat Jiang P, Zhou M, Wen D, Wang Y (2021) An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling. Combust Flame 234:111622CrossRef Jiang P, Zhou M, Wen D, Wang Y (2021) An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modeling. Combust Flame 234:111622CrossRef
6.
Zurück zum Zitat Mannazhi M, Török S, Gao J, Bengtsson P-E (2021) Soot maturity studies in methane-air diffusion flames at elevated pressures using laser-induced incandescence. Proc Combust Inst 38:1217–1224CrossRef Mannazhi M, Török S, Gao J, Bengtsson P-E (2021) Soot maturity studies in methane-air diffusion flames at elevated pressures using laser-induced incandescence. Proc Combust Inst 38:1217–1224CrossRef
7.
Zurück zum Zitat Wei Y, Zhang J, Nadjai A, Beji T, Delichatsios MA (2011) A global soot model developed for fires: validation in laminar flames and application in turbulent pool fires. Fire Saf J 46:371–387CrossRef Wei Y, Zhang J, Nadjai A, Beji T, Delichatsios MA (2011) A global soot model developed for fires: validation in laminar flames and application in turbulent pool fires. Fire Saf J 46:371–387CrossRef
8.
Zurück zum Zitat Kruse S, Medwell P, Davidovic M, Sun Z, Ye J, Pitsch H, Dally BB (2021) The effect of fuel composition and Reynolds number on soot formation processes in turbulent non-premixed toluene jet flames. Proc Combust Inst 38:1395–1402CrossRef Kruse S, Medwell P, Davidovic M, Sun Z, Ye J, Pitsch H, Dally BB (2021) The effect of fuel composition and Reynolds number on soot formation processes in turbulent non-premixed toluene jet flames. Proc Combust Inst 38:1395–1402CrossRef
9.
Zurück zum Zitat Liu F, Guo H, Smallwood GJ, Gülder ÖL (2003) Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combust Theor Model 7:301CrossRef Liu F, Guo H, Smallwood GJ, Gülder ÖL (2003) Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combust Theor Model 7:301CrossRef
10.
Zurück zum Zitat Hoerlle CA, França FHR, Pagot PR, Pereira FM (2020) Effects of radiation modeling on non-premixed sooting flames simulations under oxyfuel conditions. Combust Flame 217:294–305CrossRef Hoerlle CA, França FHR, Pagot PR, Pereira FM (2020) Effects of radiation modeling on non-premixed sooting flames simulations under oxyfuel conditions. Combust Flame 217:294–305CrossRef
11.
Zurück zum Zitat Delichatsios MA (1994) A phenomenological model for smoke-point and soot formation in laminar flames. Combust Sci Technol 100:283–298CrossRef Delichatsios MA (1994) A phenomenological model for smoke-point and soot formation in laminar flames. Combust Sci Technol 100:283–298CrossRef
12.
Zurück zum Zitat Beji T, Zhang JP, Delichatsios M (2008) Determination of soot formation rate from laminar smoke point measurements. Combust Sci Technol 180:927–940CrossRef Beji T, Zhang JP, Delichatsios M (2008) Determination of soot formation rate from laminar smoke point measurements. Combust Sci Technol 180:927–940CrossRef
13.
Zurück zum Zitat Lee KB, Thring MW, Beér J (1962) On the rate of combustion of soot in a laminar soot flame. Combust Flame 6:137–145CrossRef Lee KB, Thring MW, Beér J (1962) On the rate of combustion of soot in a laminar soot flame. Combust Flame 6:137–145CrossRef
14.
Zurück zum Zitat Leung KM, Lindstedt RP, Jones WP (1991) A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame 87:289–305CrossRef Leung KM, Lindstedt RP, Jones WP (1991) A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame 87:289–305CrossRef
15.
Zurück zum Zitat Wang H (2011) Formation of nascent soot and other condensed-phase materials in flames. Proc Combust Inst 33:41–67CrossRef Wang H (2011) Formation of nascent soot and other condensed-phase materials in flames. Proc Combust Inst 33:41–67CrossRef
16.
Zurück zum Zitat Moss J, Aksit I (2007) Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc Combust Inst 31:3139–3146CrossRef Moss J, Aksit I (2007) Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proc Combust Inst 31:3139–3146CrossRef
17.
Zurück zum Zitat Yuen ACY (2014) On the prediction of combustion products and soot particles in compartment fires. University of New South Wales. Yuen ACY (2014) On the prediction of combustion products and soot particles in compartment fires. University of New South Wales.
18.
Zurück zum Zitat Yuen A, Yeoh G, Timchenko V, Cheung S, Barber T (2016) Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transfer 96:171–188CrossRef Yuen A, Yeoh G, Timchenko V, Cheung S, Barber T (2016) Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transfer 96:171–188CrossRef
19.
Zurück zum Zitat Yuen A, Yeoh G, Timchenko V, Chen T, Chan Q, Wang C, Li D (2017) Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transfer 115:717–729CrossRef Yuen A, Yeoh G, Timchenko V, Chen T, Chan Q, Wang C, Li D (2017) Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transfer 115:717–729CrossRef
20.
Zurück zum Zitat Ko GH, Hamins A, Bundy M, Johnsson EL, Kim SC, Lenhert DB (2009) Mixture fraction analysis of combustion products in the upper layer of reduced-scale compartment fires. Combust Flame 156:467–476CrossRef Ko GH, Hamins A, Bundy M, Johnsson EL, Kim SC, Lenhert DB (2009) Mixture fraction analysis of combustion products in the upper layer of reduced-scale compartment fires. Combust Flame 156:467–476CrossRef
21.
Zurück zum Zitat Sahu D, Jain S, Gupta A, Kumar S (2019) Experimental studies on different liquid pool fires inside the compartment. Fire Saf J 109:102858CrossRef Sahu D, Jain S, Gupta A, Kumar S (2019) Experimental studies on different liquid pool fires inside the compartment. Fire Saf J 109:102858CrossRef
22.
Zurück zum Zitat Yuan M, Chen B, Li C, Zhang J, Lu S (2013) Analysis of the combustion efficiencies and heat release rates of pool fires in ceiling vented compartments. Procedia Eng 62:275–282CrossRef Yuan M, Chen B, Li C, Zhang J, Lu S (2013) Analysis of the combustion efficiencies and heat release rates of pool fires in ceiling vented compartments. Procedia Eng 62:275–282CrossRef
23.
Zurück zum Zitat Chen X, Lu S, Ding Z (2020) Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure. J Therm Anal Calorim 139:1409–1418CrossRef Chen X, Lu S, Ding Z (2020) Initial fuel depth effect on the burning characteristics of thin-layer pool fire in a confined enclosure. J Therm Anal Calorim 139:1409–1418CrossRef
24.
Zurück zum Zitat Guo F, Wang C, Zhang J (2018) Spray fire induced gas temperature characteristics and correlations in a ceiling ventilated compartment. Int J Therm Sci 134:188–199CrossRef Guo F, Wang C, Zhang J (2018) Spray fire induced gas temperature characteristics and correlations in a ceiling ventilated compartment. Int J Therm Sci 134:188–199CrossRef
25.
Zurück zum Zitat He Q, Ezekoye OA, Li C, Lu S (2015) Ventilation limited extinction of fires in ceiling vented compartments. Int J Heat Mass Transfer 91:570–583CrossRef He Q, Ezekoye OA, Li C, Lu S (2015) Ventilation limited extinction of fires in ceiling vented compartments. Int J Heat Mass Transfer 91:570–583CrossRef
26.
Zurück zum Zitat Chen X, Lu S, Wang X, Liew KM, Li C, Zhang J (2016) Pulsation behavior of pool fires in a confined compartment with a horizontal opening. Fire Technol 52:515–531CrossRef Chen X, Lu S, Wang X, Liew KM, Li C, Zhang J (2016) Pulsation behavior of pool fires in a confined compartment with a horizontal opening. Fire Technol 52:515–531CrossRef
28.
Zurück zum Zitat Zhang P, Liu H-F, Chen B-L, Tang Q-L, Yao M-F (2015) Fluorescence spectra of polycyclic aromatic hydrocarbons and soot concentration in partially premixed flames of diesel surrogate containing oxygenated additives. Wuli Huaxue Xuebao 31:32–40 Zhang P, Liu H-F, Chen B-L, Tang Q-L, Yao M-F (2015) Fluorescence spectra of polycyclic aromatic hydrocarbons and soot concentration in partially premixed flames of diesel surrogate containing oxygenated additives. Wuli Huaxue Xuebao 31:32–40
29.
Zurück zum Zitat Lautenberger CW, Ris J, Dembsey NA, Barnett JR, Baum HR (2005) A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames. Fire Saf J 40:141–176CrossRef Lautenberger CW, Ris J, Dembsey NA, Barnett JR, Baum HR (2005) A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames. Fire Saf J 40:141–176CrossRef
30.
Zurück zum Zitat Lide DR (2006) CRC handbook of chemistry and physics, 86th edition. J Am Chem Soc 128:5585 Lide DR (2006) CRC handbook of chemistry and physics, 86th edition. J Am Chem Soc 128:5585
31.
Zurück zum Zitat Zhang J, Lu S, Li C, Yuan M, Yuen R (2013) On the self-extinction time of pool fire in closed compartments. Procedia Eng 62:266–274CrossRef Zhang J, Lu S, Li C, Yuan M, Yuen R (2013) On the self-extinction time of pool fire in closed compartments. Procedia Eng 62:266–274CrossRef
32.
33.
Zurück zum Zitat Xin Y, Gore JP (2005) Two-dimensional soot distributions in buoyant turbulent fires. Proc Combust Inst 30:719–726CrossRef Xin Y, Gore JP (2005) Two-dimensional soot distributions in buoyant turbulent fires. Proc Combust Inst 30:719–726CrossRef
34.
Zurück zum Zitat Qamar N, Nathan G, Alwahabi Z, King K (2005) The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames. Proc Combust Inst 30:1493–1500CrossRef Qamar N, Nathan G, Alwahabi Z, King K (2005) The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames. Proc Combust Inst 30:1493–1500CrossRef
35.
Zurück zum Zitat Qamar N, Alwahabi Z, Chan Q, Nathan G, Roekaerts D, King K (2009) Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust Flame 156:1339–1347CrossRef Qamar N, Alwahabi Z, Chan Q, Nathan G, Roekaerts D, King K (2009) Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combust Flame 156:1339–1347CrossRef
36.
Zurück zum Zitat Köhler M, Geigle KP, Meier W, Crosland BM, Thomson KA, Smallwood GJ (2011) Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl Phys B 104:409–425CrossRef Köhler M, Geigle KP, Meier W, Crosland BM, Thomson KA, Smallwood GJ (2011) Sooting turbulent jet flame: characterization and quantitative soot measurements. Appl Phys B 104:409–425CrossRef
37.
Zurück zum Zitat Quay B, Lee T-W, Ni T, Santoro R (1994) Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combust Flame 97:384–392CrossRef Quay B, Lee T-W, Ni T, Santoro R (1994) Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combust Flame 97:384–392CrossRef
38.
Zurück zum Zitat Schulz C, Kock BF, Hofmann M, Michelsen H, Will S, Bougie B, Suntz R, Smallwood G (2006) Laser-induced incandescence: recent trends and current questions. Appl Phys B 83:333–354CrossRef Schulz C, Kock BF, Hofmann M, Michelsen H, Will S, Bougie B, Suntz R, Smallwood G (2006) Laser-induced incandescence: recent trends and current questions. Appl Phys B 83:333–354CrossRef
39.
Zurück zum Zitat Moreau CS, Therssen E, Mercier X, Pauwels J, Desgroux P (2004) Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Appl Phys B 78:485–492CrossRef Moreau CS, Therssen E, Mercier X, Pauwels J, Desgroux P (2004) Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Appl Phys B 78:485–492CrossRef
40.
Zurück zum Zitat Hebert D, Coppalle A, Talbaut M (2013) 2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence. Proc Combust Inst 34:2575–2582CrossRef Hebert D, Coppalle A, Talbaut M (2013) 2d soot concentration and burning rate of a vertical pmma slab using laser-induced incandescence. Proc Combust Inst 34:2575–2582CrossRef
41.
Zurück zum Zitat Melton LA (1984) Soot diagnostics based on laser heating. Appl Opt 23:2201–2208CrossRef Melton LA (1984) Soot diagnostics based on laser heating. Appl Opt 23:2201–2208CrossRef
42.
Zurück zum Zitat de Francqueville L, Bruneaux G, Thirouard B (2010) Soot volume fraction measurements in a gasoline direct injection engine by combined laser induced incandescence and laser extinction method. SAE Int J Engines 3:163–182CrossRef de Francqueville L, Bruneaux G, Thirouard B (2010) Soot volume fraction measurements in a gasoline direct injection engine by combined laser induced incandescence and laser extinction method. SAE Int J Engines 3:163–182CrossRef
43.
Zurück zum Zitat Widmann J, Yang JC, Smith T, Manzello S, Mulholland GW (2003) Measurement of the optical extinction coefficients of post-flame soot in the infrared. Combust Flame 134:119–129CrossRef Widmann J, Yang JC, Smith T, Manzello S, Mulholland GW (2003) Measurement of the optical extinction coefficients of post-flame soot in the infrared. Combust Flame 134:119–129CrossRef
44.
Zurück zum Zitat Williams TC, Shaddix CR, Jensen KA, Suo-Anttila JM (2007) Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. Int J Heat Mass Transfer 50:1616–1630CrossRef Williams TC, Shaddix CR, Jensen KA, Suo-Anttila JM (2007) Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. Int J Heat Mass Transfer 50:1616–1630CrossRef
45.
Zurück zum Zitat Zhao H, Ladommatos N (1998) Optical diagnostics for soot and temperature measurement in diesel engines. Prog Energy Combust Sci 24:221–255CrossRef Zhao H, Ladommatos N (1998) Optical diagnostics for soot and temperature measurement in diesel engines. Prog Energy Combust Sci 24:221–255CrossRef
46.
Zurück zum Zitat Chen X, Lu S (2018) Fire-induced horizontal vent flow pattern in a ceiling vented enclosure: theoretical analysis and experimental verification. In: Asia-Oceania symposium on fire science and technology, pp 167–179 Chen X, Lu S (2018) Fire-induced horizontal vent flow pattern in a ceiling vented enclosure: theoretical analysis and experimental verification. In: Asia-Oceania symposium on fire science and technology, pp 167–179
47.
Zurück zum Zitat Beji T, Zhang J, Delichatsios M (2008) Soot formation and oxidation in fires from laminar smoke point measurements. Fire Saf. Sci. 9:219–230CrossRef Beji T, Zhang J, Delichatsios M (2008) Soot formation and oxidation in fires from laminar smoke point measurements. Fire Saf. Sci. 9:219–230CrossRef
Metadaten
Titel
Investigation of 2D Soot Distribution and Characteristic Soot Volume Fraction of Flames in the Confined Compartment with a Horizontal Opening
verfasst von
Wenbin Yao
Xiao Chen
Shouxiang Lu
Publikationsdatum
12.12.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01354-8

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe