Skip to main content

15.05.2024

Joint block sparse signal recovery-based active user detection in 5G cloud radio access networks

verfasst von: Mehdi Torabnezhad, Mohammadreza Zahabi

Erschienen in: Telecommunication Systems

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Cloud Radio Access Network (C-RAN) is a state-of-the-art system paradigm that simultaneously improves spectral and energy efficiency. Capacity constraints of the fronthaul links connecting Remote Radio Heads (RRH) to the Cloud Unit are notable limitations of these networks. The multitude of RRHs and users make active user estimation and calculating Channel Side Information (CSI) between active users and RRHs necessary for implementing these networks. Moreover, in C-RAN, user activity detection is essential for energy-efficient resource allocation, calculating CSI, optimal precoder design, interference management, and multi-user detection. This study investigates active user detection in C-RAN as a joint block sparse signal recovery problem and evaluates the impact of fronthaul limitations, sparsity level, and other network parameters for different sparse signal reconstruction methods. We introduce an efficient method that is based on recovering multiple sparse signals sharing the same sparsity pattern or the same support set of non-zero entries. This method is developed using 5G training signals for user activity detection in C-RAN with fronthaul capacity limitations and without prior knowledge of the sparsity of users. In the end, we compare active user detection results for different sparse signal recovery methods, namely joint block sparse signal and block sparse signal algorithms, with different network specifications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 5G Vision White Paper. (2015). DMC R&D Center. Samsung Electronics Co. Ltd. 5G Vision White Paper. (2015). DMC R&D Center. Samsung Electronics Co. Ltd.
2.
Zurück zum Zitat Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys Tutorials, 17(1), 405–426.CrossRef Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys Tutorials, 17(1), 405–426.CrossRef
3.
Zurück zum Zitat Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M., & Dittmann, L. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.CrossRef Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M., & Dittmann, L. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.CrossRef
4.
Zurück zum Zitat Tang, J., Wee Peng, T., Tony, Q., & Liang, B. (2017). System cost minimization in cloud RAN with limited fronthaul capacity. IEEE Transactions on Wireless Communications, 16(5), 3371–3384.CrossRef Tang, J., Wee Peng, T., Tony, Q., & Liang, B. (2017). System cost minimization in cloud RAN with limited fronthaul capacity. IEEE Transactions on Wireless Communications, 16(5), 3371–3384.CrossRef
5.
Zurück zum Zitat Peng, M., Sun, Y., Li, X., Mao, Z., & Wang, C. (2016). Recent advances in cloud radio access networks: System architectures, key techniques and open issues. IEEE Communications Surveys & Tutorials, 18(3), 2282–2308.CrossRef Peng, M., Sun, Y., Li, X., Mao, Z., & Wang, C. (2016). Recent advances in cloud radio access networks: System architectures, key techniques and open issues. IEEE Communications Surveys & Tutorials, 18(3), 2282–2308.CrossRef
7.
Zurück zum Zitat Utkovski, Z., Simeone, O., Dimitrova, T., & Popovski, P. (2017). Random access in C-RAN for user activity detection with limited-capacity fronthaul. IEEE Signal Processing Letters, 24, 17–21.CrossRef Utkovski, Z., Simeone, O., Dimitrova, T., & Popovski, P. (2017). Random access in C-RAN for user activity detection with limited-capacity fronthaul. IEEE Signal Processing Letters, 24, 17–21.CrossRef
8.
Zurück zum Zitat Rao, X., & Lau, K. N. (2015). Distributed fronthaul compression and joint signal recovery in cloud-RAN. IEEE Transactions on Signal Processing, 63, 1056–1065.CrossRef Rao, X., & Lau, K. N. (2015). Distributed fronthaul compression and joint signal recovery in cloud-RAN. IEEE Transactions on Signal Processing, 63, 1056–1065.CrossRef
9.
Zurück zum Zitat Wang, W., Lau, V., & Peng, M. (2017). Delay-aware uplink fronthaul allocation in cloud radio access networks. IEEE Transactions On wireless communication, 16(99), 4275–4287.CrossRef Wang, W., Lau, V., & Peng, M. (2017). Delay-aware uplink fronthaul allocation in cloud radio access networks. IEEE Transactions On wireless communication, 16(99), 4275–4287.CrossRef
10.
Zurück zum Zitat Quek, Q., He, T., Chen, Zh., Zhang, Q., & Li, Sh. (2018). Compressive channel estimation and multi-user detection in C-RAN with low-complexity methods. EEE Transactions on Wireless Communications, 17, 3931–3944.CrossRef Quek, Q., He, T., Chen, Zh., Zhang, Q., & Li, Sh. (2018). Compressive channel estimation and multi-user detection in C-RAN with low-complexity methods. EEE Transactions on Wireless Communications, 17, 3931–3944.CrossRef
11.
Zurück zum Zitat Xu, X., Rao, X., Lau, V. (2015). Active user detection and channel estimation in uplink CRAN systems. In IEEE International Conference on Communications (ICC). pp. 2727–2732. Xu, X., Rao, X., Lau, V. (2015). Active user detection and channel estimation in uplink CRAN systems. In IEEE International Conference on Communications (ICC). pp. 2727–2732.
12.
Zurück zum Zitat Liu, J., Liu, A., & Lau, V. (2017). Compressive interference mitigation and data recovery in cloud radio access networks with limited fronthaul. IEEE Transactions on Signal Processing, 65, 1437–1446.CrossRef Liu, J., Liu, A., & Lau, V. (2017). Compressive interference mitigation and data recovery in cloud radio access networks with limited fronthaul. IEEE Transactions on Signal Processing, 65, 1437–1446.CrossRef
13.
Zurück zum Zitat He, Q., Chen, Zh., Quek, T., Choi, J., & Li, Sh. (2018). Compressive channel estimation and user activity detection in distributed input distributed output systems. IEEE Communications Letters, 22, 1850–1853.CrossRef He, Q., Chen, Zh., Quek, T., Choi, J., & Li, Sh. (2018). Compressive channel estimation and user activity detection in distributed input distributed output systems. IEEE Communications Letters, 22, 1850–1853.CrossRef
14.
Zurück zum Zitat Liao, Ch., Chen, T., & Wu, A. (2019). Real-time multi-user detection engine design for IoT applications via modified sparsity adaptive matching pursuit. IEEE Transactions On Circuits and Systems, 66, 2987–3000.CrossRef Liao, Ch., Chen, T., & Wu, A. (2019). Real-time multi-user detection engine design for IoT applications via modified sparsity adaptive matching pursuit. IEEE Transactions On Circuits and Systems, 66, 2987–3000.CrossRef
15.
Zurück zum Zitat Eldar, Y. C., Kuppinger, P., & Bölcskei, H. (2010). Block-sparse signals: uncertainty relations and efficient recovery. IEEE Transaction on Signal Processing, 58, 3042–3054.CrossRef Eldar, Y. C., Kuppinger, P., & Bölcskei, H. (2010). Block-sparse signals: uncertainty relations and efficient recovery. IEEE Transaction on Signal Processing, 58, 3042–3054.CrossRef
16.
Zurück zum Zitat 3GPP TS 38.401, 5G-NG-RAN: Architecture description, Version 15.2.0, Release 15. 3GPP TS 38.401, 5G-NG-RAN: Architecture description, Version 15.2.0, Release 15.
17.
Zurück zum Zitat Launay, F. (2021). NG-RAN and 5G-NR: 5G radio access network and radio interface. Wiley-ISTE.CrossRef Launay, F. (2021). NG-RAN and 5G-NR: 5G radio access network and radio interface. Wiley-ISTE.CrossRef
19.
Zurück zum Zitat 3GPP TS 38.211, 5G NR - Physical Channels and modulation, Version 15.8.0, Release 15. 3GPP TS 38.211, 5G NR - Physical Channels and modulation, Version 15.8.0, Release 15.
20.
Zurück zum Zitat Omri, A., Shaqfeh, M., Ali, A., & Alnuweiri, H. (2019). Synchronization Procedure in 5G NR Systems. IEEE Access Journals & Magazines, 7, 41286–41295.CrossRef Omri, A., Shaqfeh, M., Ali, A., & Alnuweiri, H. (2019). Synchronization Procedure in 5G NR Systems. IEEE Access Journals & Magazines, 7, 41286–41295.CrossRef
21.
Zurück zum Zitat Beyme, S., & Leung, C. (2009). Efficient computation of DFT of zadoff-chu sequences. Electronics Letters, 45, 461–463.CrossRef Beyme, S., & Leung, C. (2009). Efficient computation of DFT of zadoff-chu sequences. Electronics Letters, 45, 461–463.CrossRef
22.
Zurück zum Zitat Popovic, B. (2010). Efficient DFT of zadoff-chu sequences. Electronics Letters, 46, 502–503.CrossRef Popovic, B. (2010). Efficient DFT of zadoff-chu sequences. Electronics Letters, 46, 502–503.CrossRef
23.
Zurück zum Zitat Hyder, M., & Mahata, K. (2017). Zadoff-Chu sequence design for random access initial uplink synchronization in LTE-like systems. IEEE Transactions on Wireless Communications, 16, 503–511.CrossRef Hyder, M., & Mahata, K. (2017). Zadoff-Chu sequence design for random access initial uplink synchronization in LTE-like systems. IEEE Transactions on Wireless Communications, 16, 503–511.CrossRef
24.
Zurück zum Zitat Elad, M., & Bruckstein, A. (2009). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transaction on Information Theory, 48, 2558–2567.CrossRef Elad, M., & Bruckstein, A. (2009). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transaction on Information Theory, 48, 2558–2567.CrossRef
25.
Zurück zum Zitat Eldar, Y. C., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transaction on Information Theory, 55, 5302–5316.CrossRef Eldar, Y. C., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transaction on Information Theory, 55, 5302–5316.CrossRef
26.
Zurück zum Zitat Rajamohan, N., Joshi, A., & Kannu, A. (2017). Joint block sparse signal recovery problem and applications in LTE cell search. IEEE Transactions on Vehicular Technology, 66, 1130–1143.CrossRef Rajamohan, N., Joshi, A., & Kannu, A. (2017). Joint block sparse signal recovery problem and applications in LTE cell search. IEEE Transactions on Vehicular Technology, 66, 1130–1143.CrossRef
28.
Zurück zum Zitat Chu, D. (1972). Polyphase codes with good periodic correlation properties. IEEE Transactions on Information Theory, 18, 531–532.CrossRef Chu, D. (1972). Polyphase codes with good periodic correlation properties. IEEE Transactions on Information Theory, 18, 531–532.CrossRef
29.
Zurück zum Zitat Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. Mathematical Programming, 95, 3–51.CrossRef Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. Mathematical Programming, 95, 3–51.CrossRef
Metadaten
Titel
Joint block sparse signal recovery-based active user detection in 5G cloud radio access networks
verfasst von
Mehdi Torabnezhad
Mohammadreza Zahabi
Publikationsdatum
15.05.2024
Verlag
Springer US
Erschienen in
Telecommunication Systems
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-024-01159-w