Skip to main content

07.05.2024 | Review

Laser Wobble Welding Process: A Review on Metallurgical, Mechanical, and Geometrical Characteristics and Defects

verfasst von: Shahin Sanati, Seyedeh Fatemeh Nabavi, Reihaneh Esmaili, Anooshiravan Farshidianfar

Erschienen in: Lasers in Manufacturing and Materials Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The laser wobble welding process has emerged as a novel welding technique designed to overcome the limitations of the conventional laser welding process. By introducing laser beam wobble on the workpiece during the welding process, this method enhances noticeable welding characteristics and effectively mitigates welding defects. Despite its significant importance, there remains a noticeable lack of comprehensive study that thoroughly explores the various characteristics of this technology. This study aims to bridge that gap by considering and analyzing recent studies about the laser wobble welding process, providing a holistic investigation of its characteristics and advantages in comparison to the conventional laser welding process. Furthermore, the study systematically examines laser wobble welding from four crucial perspectives: 1- Metallurgical, 2- Geometrical, 3- Mechanical characteristics, and 4- Defect. Each perspective is meticulously investigated and contrasted with those of the conventional laser welding process. The results of these studies unequivocally demonstrate the advantages of laser wobble welding over the traditional method. The findings highlight the improved weld quality and enhanced mechanical characteristics achieved through this innovative approach. In addition to the above analysis, this study also reviews prior research conducted in the field of laser wobble welding. By examining previous studies, the optimal range of power, frequency, and welding speed required to optimize the three critical aspects of the laser wobble welding process is established. In conclusion, this study, with a review of previous studies, provides valuable insights into the laser wobble welding process, shedding light on its potential to revolutionize the welding industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farshidianfar, A., Marandi, S., Farshidianfar, M.H., Nabavi, S.F.: Investigation into effective parameters on the Kerf Width of Stainless Steel 316 with analysis of Variance in Fiber laser cutting process. Modares Mech. Eng., 21, 1, (2021) Farshidianfar, A., Marandi, S., Farshidianfar, M.H., Nabavi, S.F.: Investigation into effective parameters on the Kerf Width of Stainless Steel 316 with analysis of Variance in Fiber laser cutting process. Modares Mech. Eng., 21, 1, (2021)
2.
Zurück zum Zitat Shrivastava, P.K., Singh, B., Shrivastava, Y., Pandey, A.K.: Prediction of geometric quality characteristics during laser cutting of Inconel-718 sheet using statistical approach. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–20 (2019)CrossRef Shrivastava, P.K., Singh, B., Shrivastava, Y., Pandey, A.K.: Prediction of geometric quality characteristics during laser cutting of Inconel-718 sheet using statistical approach. J. Brazilian Soc. Mech. Sci. Eng. 41, 1–20 (2019)CrossRef
3.
Zurück zum Zitat Khodabakhshi, F., Farshidianfar, M., Gerlich, A., Nosko, M., Trembošová, V., Khajepour, A.: Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels. Additive Manuf. 31, 100915 (2020)CrossRef Khodabakhshi, F., Farshidianfar, M., Gerlich, A., Nosko, M., Trembošová, V., Khajepour, A.: Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels. Additive Manuf. 31, 100915 (2020)CrossRef
4.
Zurück zum Zitat Wei, C., Li, L.: Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 16(3), 347–371 (2021)CrossRef Wei, C., Li, L.: Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 16(3), 347–371 (2021)CrossRef
5.
Zurück zum Zitat Li, L., Syed, W., Pinkerton, A.: Rapid additive manufacturing of functionally graded structures using simultaneous wire and powder laser deposition. Virtual Phys. Prototyp. 1(4), 217–225 (2006)CrossRef Li, L., Syed, W., Pinkerton, A.: Rapid additive manufacturing of functionally graded structures using simultaneous wire and powder laser deposition. Virtual Phys. Prototyp. 1(4), 217–225 (2006)CrossRef
6.
Zurück zum Zitat Farshidianfar, M.H., Nabavi, S.F., Eshraghi, F., Farshidianfar, A.: Laser cladding in recent years. Sci. Mech. Eng. 30(2), 69–77 (2021) Farshidianfar, M.H., Nabavi, S.F., Eshraghi, F., Farshidianfar, A.: Laser cladding in recent years. Sci. Mech. Eng. 30(2), 69–77 (2021)
7.
Zurück zum Zitat Pawlowski, L.: Thick laser coatings: A review. J. Therm. Spray Technol. 8, 279–295 (1999)CrossRef Pawlowski, L.: Thick laser coatings: A review. J. Therm. Spray Technol. 8, 279–295 (1999)CrossRef
8.
Zurück zum Zitat Patel, S., Patel, S.B., Patel, A.B.: A review on laser engraving process. JSRD-International J. Sci. Res. Dev. 3(1), 247–250 (2015) Patel, S., Patel, S.B., Patel, A.B.: A review on laser engraving process. JSRD-International J. Sci. Res. Dev. 3(1), 247–250 (2015)
9.
Zurück zum Zitat Muthukumaran, G., Dinesh Babu, P.: Laser transformation hardening of various steel grades using different laser types. J. Brazilian Soc. Mech. Sci. Eng. 43, 1–29 (2021)CrossRef Muthukumaran, G., Dinesh Babu, P.: Laser transformation hardening of various steel grades using different laser types. J. Brazilian Soc. Mech. Sci. Eng. 43, 1–29 (2021)CrossRef
10.
Zurück zum Zitat Mishra, Y.K., Mishra, S., Jayswal, S.C., Suryavanshi, A.: Inclined laser drilling in glass fiber reinforced plastic using nd: YAG laser. J. Brazilian Soc. Mech. Sci. Eng. 44(2), 66 (2022)CrossRef Mishra, Y.K., Mishra, S., Jayswal, S.C., Suryavanshi, A.: Inclined laser drilling in glass fiber reinforced plastic using nd: YAG laser. J. Brazilian Soc. Mech. Sci. Eng. 44(2), 66 (2022)CrossRef
11.
Zurück zum Zitat Dadbakhsh, S., Hao, L., Kong, C.Y.: Surface finish improvement of LMD samples using laser polishing. Virtual Phys. Prototyp. 5(4), 215–221 (2010)CrossRef Dadbakhsh, S., Hao, L., Kong, C.Y.: Surface finish improvement of LMD samples using laser polishing. Virtual Phys. Prototyp. 5(4), 215–221 (2010)CrossRef
12.
Zurück zum Zitat Manshoori Yeganeh, A., Movahhedy, M., Khodaygan, S.: An efficient scanning algorithm for improving accuracy based on minimising part warping in selected laser sintering process. Virtual Phys. Prototyp. 14(1), 59–78 (2019)CrossRef Manshoori Yeganeh, A., Movahhedy, M., Khodaygan, S.: An efficient scanning algorithm for improving accuracy based on minimising part warping in selected laser sintering process. Virtual Phys. Prototyp. 14(1), 59–78 (2019)CrossRef
13.
Zurück zum Zitat Mazumder, J.: Laser welding: State of the art review. Jom(the J. Minerals Met. Mater. Soc. (TMS)). 34, 16–24 (1982)CrossRef Mazumder, J.: Laser welding: State of the art review. Jom(the J. Minerals Met. Mater. Soc. (TMS)). 34, 16–24 (1982)CrossRef
14.
Zurück zum Zitat Kumar, P., Saw, K., Kumar, U., Kumar, R., Chattopadhyaya, S., Hloch, S.: Effect of laser power and welding speed on microstructure and mechanical properties of fibre laser-welded Inconel 617 thin sheet. J. Brazilian Soc. Mech. Sci. Eng. 39, 4579–4588 (2017)CrossRef Kumar, P., Saw, K., Kumar, U., Kumar, R., Chattopadhyaya, S., Hloch, S.: Effect of laser power and welding speed on microstructure and mechanical properties of fibre laser-welded Inconel 617 thin sheet. J. Brazilian Soc. Mech. Sci. Eng. 39, 4579–4588 (2017)CrossRef
15.
Zurück zum Zitat Saravanan, S., Raghukandan, K., Sivagurumanikandan, N.: Studies on metallurgical and mechanical properties of laser welded dissimilar grade steels. J. Brazilian Soc. Mech. Sci. Eng. 39, 3491–3498 (2017)CrossRef Saravanan, S., Raghukandan, K., Sivagurumanikandan, N.: Studies on metallurgical and mechanical properties of laser welded dissimilar grade steels. J. Brazilian Soc. Mech. Sci. Eng. 39, 3491–3498 (2017)CrossRef
16.
Zurück zum Zitat Farshidianfar, A.: Plate heat exchangers, design, application and performance, (2014) Farshidianfar, A.: Plate heat exchangers, design, application and performance, (2014)
17.
Zurück zum Zitat Kou, S.: Welding metallurgy. New. Jersey USA. 431(446), 223–225 (2003) Kou, S.: Welding metallurgy. New. Jersey USA. 431(446), 223–225 (2003)
18.
Zurück zum Zitat Xiao, R., Zhang, X.: Problems and issues in laser beam welding of aluminum–lithium alloys. J. Manuf. Process. 16(2), 166–175 (2014)CrossRef Xiao, R., Zhang, X.: Problems and issues in laser beam welding of aluminum–lithium alloys. J. Manuf. Process. 16(2), 166–175 (2014)CrossRef
19.
Zurück zum Zitat Vollertsen, F., Thomy, C.: Magnetic stirring during laser welding of aluminium. p. 203 Vollertsen, F., Thomy, C.: Magnetic stirring during laser welding of aluminium. p. 203
20.
Zurück zum Zitat Chakraborty, N., Chakraborty, S.: Modelling of turbulent molten pool convection in laser welding of a copper–nickel dissimilar couple. Int. J. Heat Mass Transf. 50, 9–10 (2007)CrossRef Chakraborty, N., Chakraborty, S.: Modelling of turbulent molten pool convection in laser welding of a copper–nickel dissimilar couple. Int. J. Heat Mass Transf. 50, 9–10 (2007)CrossRef
21.
Zurück zum Zitat Jiang, M., Chen, X., Chen, Y., Tao, W.: Mitigation of porosity defects in fiber laser welding under low vacuum. J. Mater. Process. Technol. 276, 116385 (2020)CrossRef Jiang, M., Chen, X., Chen, Y., Tao, W.: Mitigation of porosity defects in fiber laser welding under low vacuum. J. Mater. Process. Technol. 276, 116385 (2020)CrossRef
22.
Zurück zum Zitat Jiang, M., Chen, Y., Chen, X., Tao, W., Debroy, T.: Enhanced penetration depth during reduced pressure keyhole-mode laser welding. Weld. J. 90, 110–123 (2020)CrossRef Jiang, M., Chen, Y., Chen, X., Tao, W., Debroy, T.: Enhanced penetration depth during reduced pressure keyhole-mode laser welding. Weld. J. 90, 110–123 (2020)CrossRef
23.
Zurück zum Zitat Jiang, M., Jiang, N., Chen, X., Ma, S., Chen, Y., Chen, Y., Lei, Z.: Experimental and numerical investigation of single-pass laser welding of 20 mm-thick high-strength steel under reduced ambient pressure. J. Mater. Res. Technol. 15, 2317–2331 (2021)CrossRef Jiang, M., Jiang, N., Chen, X., Ma, S., Chen, Y., Chen, Y., Lei, Z.: Experimental and numerical investigation of single-pass laser welding of 20 mm-thick high-strength steel under reduced ambient pressure. J. Mater. Res. Technol. 15, 2317–2331 (2021)CrossRef
24.
Zurück zum Zitat Rubben, K., Mohrbacher, H., Leirman, E.: Advantages of using an oscillating laser beam for the production of tailored blanks. pp. 228–241 Rubben, K., Mohrbacher, H., Leirman, E.: Advantages of using an oscillating laser beam for the production of tailored blanks. pp. 228–241
25.
Zurück zum Zitat Zhang, X., Chen, W., Bao, G., Zhao, L.: Suppression of porosity in beam weaving laser welding. Sci. Technol. Weld. Joining. 9(4), 374–376 (2004)CrossRef Zhang, X., Chen, W., Bao, G., Zhao, L.: Suppression of porosity in beam weaving laser welding. Sci. Technol. Weld. Joining. 9(4), 374–376 (2004)CrossRef
26.
Zurück zum Zitat Kim, C., Kang, M., Kang, N.: Solidification crack and morphology for laser weave welding of Al 5J32 alloy. Sci. Technol. Weld. Joining. 18(1), 57–61 (2013)CrossRef Kim, C., Kang, M., Kang, N.: Solidification crack and morphology for laser weave welding of Al 5J32 alloy. Sci. Technol. Weld. Joining. 18(1), 57–61 (2013)CrossRef
27.
Zurück zum Zitat Choi, K.-D., Ahn, Y.-N., Kim, C.: Weld strength improvement for Al alloy by using laser weaving method. J. Laser Appl. 22(3), 116–119 (2010)CrossRef Choi, K.-D., Ahn, Y.-N., Kim, C.: Weld strength improvement for Al alloy by using laser weaving method. J. Laser Appl. 22(3), 116–119 (2010)CrossRef
28.
Zurück zum Zitat Kim, B., Kang, N., Oh, W., Kim, C., Kim, J., Kim, Y., Pari, Y.: Effects of weaving laser on Weld microstructure and crack for Al 6k21-T4 alloy. J. Mater. Sci. Technol. 27(1), 93–96 (2011)CrossRef Kim, B., Kang, N., Oh, W., Kim, C., Kim, J., Kim, Y., Pari, Y.: Effects of weaving laser on Weld microstructure and crack for Al 6k21-T4 alloy. J. Mater. Sci. Technol. 27(1), 93–96 (2011)CrossRef
29.
Zurück zum Zitat Miyagi, M., Zhang, X., Kawahito, Y., Katayama, S.: Surface void suppression for pure copper by high-speed laser scanner welding. J. Mater. Process. Technol. 240, 52–59 (2017)CrossRef Miyagi, M., Zhang, X., Kawahito, Y., Katayama, S.: Surface void suppression for pure copper by high-speed laser scanner welding. J. Mater. Process. Technol. 240, 52–59 (2017)CrossRef
30.
Zurück zum Zitat Wang, L., Gao, M., Zhang, C., Zeng, X.: Effect of beam oscillating pattern on Weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Design. 108, 707–717 (2016)CrossRef Wang, L., Gao, M., Zhang, C., Zeng, X.: Effect of beam oscillating pattern on Weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Design. 108, 707–717 (2016)CrossRef
31.
Zurück zum Zitat Castellini, L., Carmignano, M., D’Andrea, M.: Design of 18 krpm rated speed SMPM synchronous machine for wobble laser welding. pp. 391–396 Castellini, L., Carmignano, M., D’Andrea, M.: Design of 18 krpm rated speed SMPM synchronous machine for wobble laser welding. pp. 391–396
32.
Zurück zum Zitat Das, A., Dale, T., Masters, I., Widanage, D.: Feasibility of fillet edge weld using laser wobble technique. Procedia Cirp. 95, 846–851 (2020)CrossRef Das, A., Dale, T., Masters, I., Widanage, D.: Feasibility of fillet edge weld using laser wobble technique. Procedia Cirp. 95, 846–851 (2020)CrossRef
33.
Zurück zum Zitat Kumar, N., Das, A., Dale, T., Masters, I.: Laser wobble welding of fluid-based cooling channel joining for battery thermal management. J. Manuf. Process. 67, 151–169 (2021)CrossRef Kumar, N., Das, A., Dale, T., Masters, I.: Laser wobble welding of fluid-based cooling channel joining for battery thermal management. J. Manuf. Process. 67, 151–169 (2021)CrossRef
34.
Zurück zum Zitat Hao, K., Li, G., Gao, M., Zeng, X.: Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225, 77–83 (2015)CrossRef Hao, K., Li, G., Gao, M., Zeng, X.: Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225, 77–83 (2015)CrossRef
35.
Zurück zum Zitat Li, S., Mi, G., Wang, C.: A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties. J. Manuf. Process. 53, 12–20 (2020)CrossRef Li, S., Mi, G., Wang, C.: A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties. J. Manuf. Process. 53, 12–20 (2020)CrossRef
36.
Zurück zum Zitat Schweier, M., Heins, J., Haubold, M., Zaeh, M.: Spatter formation in laser welding with beam oscillation. Phys. Procedia. 41, 20–30 (2013)CrossRef Schweier, M., Heins, J., Haubold, M., Zaeh, M.: Spatter formation in laser welding with beam oscillation. Phys. Procedia. 41, 20–30 (2013)CrossRef
37.
Zurück zum Zitat Kraetzsch, M., Standfuss, J., Klotzbach, A., Kaspar, J., Brenner, B., Beyer, E.: Laser beam welding with high-frequency beam oscillation: Welding of dissimilar materials with brilliant fiber lasers. pp. 169–178 Kraetzsch, M., Standfuss, J., Klotzbach, A., Kaspar, J., Brenner, B., Beyer, E.: Laser beam welding with high-frequency beam oscillation: Welding of dissimilar materials with brilliant fiber lasers. pp. 169–178
38.
Zurück zum Zitat Naito, Y., Katayama, S., Matsunawa, A.: Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding, First International Symposium on High-Power Laser Macroprocessing, SPIE, pp. 357–362. (2003) Naito, Y., Katayama, S., Matsunawa, A.: Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding, First International Symposium on High-Power Laser Macroprocessing, SPIE, pp. 357–362. (2003)
39.
Zurück zum Zitat Matsunawa, A., Kim, J.-D., Seto, N., Mizutani, M., Katayama, S.: Dynamics of keyhole and molten pool in laser welding. J. Laser Appl. 10(6), 247–254 (1998)CrossRef Matsunawa, A., Kim, J.-D., Seto, N., Mizutani, M., Katayama, S.: Dynamics of keyhole and molten pool in laser welding. J. Laser Appl. 10(6), 247–254 (1998)CrossRef
40.
Zurück zum Zitat Li, J., Liu, Y., Zhen, Z., Kang, K., Jin, P., Li, F., Liu, Y., Sun, Q.: Analysis and improvement of laser wire filling welding process stability with beam wobble. Opt. Laser Technol. 134, 106594 (2021)CrossRef Li, J., Liu, Y., Zhen, Z., Kang, K., Jin, P., Li, F., Liu, Y., Sun, Q.: Analysis and improvement of laser wire filling welding process stability with beam wobble. Opt. Laser Technol. 134, 106594 (2021)CrossRef
41.
Zurück zum Zitat Gao, M., Zhang, Y., Meng, Y.: Interface homogenization and its relationship with tensile properties of laser-arc hybrid welded Al/steel butt-joint via beam oscillation. J. Mater. Sci. 56(25), 14126–14138 (2021)CrossRef Gao, M., Zhang, Y., Meng, Y.: Interface homogenization and its relationship with tensile properties of laser-arc hybrid welded Al/steel butt-joint via beam oscillation. J. Mater. Sci. 56(25), 14126–14138 (2021)CrossRef
42.
Zurück zum Zitat Li, J., Liu, Y., Tao, Y., Zhang, Q., Zhen, Z., Cai, C., Sun, Q.: Energy reconstruction and metallurgical characteristics in 316L NG-LWFW with assisted wire wobbling by numerical and experimental analysis. Opt. Laser Technol. 142, 107242 (2021)CrossRef Li, J., Liu, Y., Tao, Y., Zhang, Q., Zhen, Z., Cai, C., Sun, Q.: Energy reconstruction and metallurgical characteristics in 316L NG-LWFW with assisted wire wobbling by numerical and experimental analysis. Opt. Laser Technol. 142, 107242 (2021)CrossRef
43.
Zurück zum Zitat Meng, Y., Li, G., Gao, M., Zhang, C., Zeng, X.: Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding. Int. J. Adv. Manuf. Technol. 100, 2299–2309 (2019)CrossRef Meng, Y., Li, G., Gao, M., Zhang, C., Zeng, X.: Formation and suppression mechanism of lack of fusion in narrow gap laser-arc hybrid welding. Int. J. Adv. Manuf. Technol. 100, 2299–2309 (2019)CrossRef
44.
Zurück zum Zitat Nakamura, H., Kawahito, Y., Nishimoto, K., Katayama, S.: Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J. Laser Appl., 27, 3, (2015) Nakamura, H., Kawahito, Y., Nishimoto, K., Katayama, S.: Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J. Laser Appl., 27, 3, (2015)
45.
Zurück zum Zitat Li, G., Zhang, C., Gao, M., Zeng, X.: Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater. Design. 61, 239–250 (2014)CrossRef Li, G., Zhang, C., Gao, M., Zeng, X.: Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater. Design. 61, 239–250 (2014)CrossRef
46.
Zurück zum Zitat Zhang, C., Gao, M., Wang, D., Yin, J., Zeng, X.: Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy. J. Mater. Process. Technol. 240, 217–222 (2017)CrossRef Zhang, C., Gao, M., Wang, D., Yin, J., Zeng, X.: Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy. J. Mater. Process. Technol. 240, 217–222 (2017)CrossRef
47.
Zurück zum Zitat Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T.: Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum. Mater. Design. 160, 1178–1185 (2018)CrossRef Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T.: Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum. Mater. Design. 160, 1178–1185 (2018)CrossRef
48.
Zurück zum Zitat Nabavi, S.F., Farshidianfar, M.H., Farshidianfar, A., Beidokhti, B.: Physical-based methodology for prediction of weld bead characteristics in the laser edge welding process. Optik. 241, 166917 (2021)CrossRef Nabavi, S.F., Farshidianfar, M.H., Farshidianfar, A., Beidokhti, B.: Physical-based methodology for prediction of weld bead characteristics in the laser edge welding process. Optik. 241, 166917 (2021)CrossRef
49.
Zurück zum Zitat Ve, Q.L., Koirala, R., Bawahab, M., Faqeha, H., Do, M., Nguyen, Q., Date, A.S., Akbarzadeh, A.: Theoretical modelling and experimental study of spacer-filled direct contact membrane distillation: Effect of membrane thermal conductivity model selection. Desalination Water Treat. 217, 63–73 (2021)CrossRef Ve, Q.L., Koirala, R., Bawahab, M., Faqeha, H., Do, M., Nguyen, Q., Date, A.S., Akbarzadeh, A.: Theoretical modelling and experimental study of spacer-filled direct contact membrane distillation: Effect of membrane thermal conductivity model selection. Desalination Water Treat. 217, 63–73 (2021)CrossRef
50.
Zurück zum Zitat Kuryntsev, S.V., Gilmutdinov, A.K.: The effect of laser beam wobbling mode in welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691 (2015)CrossRef Kuryntsev, S.V., Gilmutdinov, A.K.: The effect of laser beam wobbling mode in welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691 (2015)CrossRef
51.
Zurück zum Zitat Schultz, V., Seefeld, T., Vollertsen, F.: Gap bridging ability in laser beam welding of thin aluminum sheets. Phys. Procedia. 56, 545–553 (2014)CrossRef Schultz, V., Seefeld, T., Vollertsen, F.: Gap bridging ability in laser beam welding of thin aluminum sheets. Phys. Procedia. 56, 545–553 (2014)CrossRef
52.
Zurück zum Zitat Naito, Y., Sakiyama, T., Nose, T.: Current problems and the answer techniques in welding technique of auto bodies-second part. Nippon Steel Tech. Rep. 103, 76–82 (2013) Naito, Y., Sakiyama, T., Nose, T.: Current problems and the answer techniques in welding technique of auto bodies-second part. Nippon Steel Tech. Rep. 103, 76–82 (2013)
53.
Zurück zum Zitat Lankalapalli, K.N., Tu, J.F., Gartner, M.: A model for estimating penetration depth of laser welding processes. J. Phys. D. 29(7), 1831 (1996)CrossRef Lankalapalli, K.N., Tu, J.F., Gartner, M.: A model for estimating penetration depth of laser welding processes. J. Phys. D. 29(7), 1831 (1996)CrossRef
54.
Zurück zum Zitat Yuce, C.: The effect of laser beam wobbling mode on weld bead geometry of tailor welded blanks. Acad. Perspective Procedia. 3(1), 282–290 (2020)CrossRef Yuce, C.: The effect of laser beam wobbling mode on weld bead geometry of tailor welded blanks. Acad. Perspective Procedia. 3(1), 282–290 (2020)CrossRef
55.
Zurück zum Zitat Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y.: Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater. Design. 186, 108195 (2020)CrossRef Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y.: Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater. Design. 186, 108195 (2020)CrossRef
56.
Zurück zum Zitat Grünenwald, S., Unt, A., Salminen, A.: Investigation of the influence of welding parameters on the Weld geometry when welding structural steel with oscillated high-power laser beam. Procedia CIRP. 74, 461–465 (2018)CrossRef Grünenwald, S., Unt, A., Salminen, A.: Investigation of the influence of welding parameters on the Weld geometry when welding structural steel with oscillated high-power laser beam. Procedia CIRP. 74, 461–465 (2018)CrossRef
57.
Zurück zum Zitat Xu, W., Tao, W., Luo, H., Yang, S.: Effect of oscillation frequency on the mechanical properties and failure behaviors of laser beam welded 22MnB5 Weld. J. Mater. Res. Technol. 22, 1436–1448 (2023)CrossRef Xu, W., Tao, W., Luo, H., Yang, S.: Effect of oscillation frequency on the mechanical properties and failure behaviors of laser beam welded 22MnB5 Weld. J. Mater. Res. Technol. 22, 1436–1448 (2023)CrossRef
58.
Zurück zum Zitat Chen, C., Xiang, Y., Gao, M.: Weld formation mechanism of fiber laser oscillating welding of dissimilar aluminum alloys. J. Manuf. Process. 60, 180–187 (2020)CrossRef Chen, C., Xiang, Y., Gao, M.: Weld formation mechanism of fiber laser oscillating welding of dissimilar aluminum alloys. J. Manuf. Process. 60, 180–187 (2020)CrossRef
59.
Zurück zum Zitat Zhao, X., Chen, J., Zhang, W., Chen, H.: A study on Weld morphology and periodic characteristics evolution of circular oscillating laser beam welding of SUS301L-HT stainless steel. Opt. Laser Technol. 159, 109030 (2023)CrossRef Zhao, X., Chen, J., Zhang, W., Chen, H.: A study on Weld morphology and periodic characteristics evolution of circular oscillating laser beam welding of SUS301L-HT stainless steel. Opt. Laser Technol. 159, 109030 (2023)CrossRef
60.
Zurück zum Zitat Mohan, A., Franciosa, P., Ceglarek, D., Auinger, M.: Numerical simulation of transport phenomena and its effect on the Weld profile and solute distribution during laser welding of dissimilar aluminium alloys with and without beam oscillation. Int. J. Adv. Manuf. Technol. 124(10), 3311–3325 (2023)CrossRef Mohan, A., Franciosa, P., Ceglarek, D., Auinger, M.: Numerical simulation of transport phenomena and its effect on the Weld profile and solute distribution during laser welding of dissimilar aluminium alloys with and without beam oscillation. Int. J. Adv. Manuf. Technol. 124(10), 3311–3325 (2023)CrossRef
61.
Zurück zum Zitat Ghajari, A., Beidokhti, B.: Investigating the microstructure and mechanical properties of stainless steel alloy (grade 316L)/AISI 4140 alloy steel produced by additive manufacturing method by friction stir welding Ghajari, A., Beidokhti, B.: Investigating the microstructure and mechanical properties of stainless steel alloy (grade 316L)/AISI 4140 alloy steel produced by additive manufacturing method by friction stir welding
62.
Zurück zum Zitat Coniglio, N., Cross, C.E.: Mechanisms for solidification crack initiation and growth in aluminum welding. Metall. Mater. Trans. A. 40, 2718–2728 (2009)CrossRef Coniglio, N., Cross, C.E.: Mechanisms for solidification crack initiation and growth in aluminum welding. Metall. Mater. Trans. A. 40, 2718–2728 (2009)CrossRef
63.
Zurück zum Zitat Kolagar, A.M.: Investigation of microstructure and mechanical properties of nickel based superalloy IN738LC deposited by laser cladding. Metall. Eng. 22(1), 52–64 (2019)MathSciNet Kolagar, A.M.: Investigation of microstructure and mechanical properties of nickel based superalloy IN738LC deposited by laser cladding. Metall. Eng. 22(1), 52–64 (2019)MathSciNet
64.
Zurück zum Zitat Verhoeven, J.D.: Fundamentals of Physical Metallurgy. John Wiley & Sons Incorporated (1975) Verhoeven, J.D.: Fundamentals of Physical Metallurgy. John Wiley & Sons Incorporated (1975)
65.
Zurück zum Zitat Mirak, A., m., Rezaimanesh, and m., gaeeni (eds.): Effect of heat input on the microstructure and mechanical properties of the high strength and low alloy steel welded joint in quenched and tempered condition (AISI 4340), Metallurgical Engineering, vol. 22, no. 3, pp. 225–238, (2020) Mirak, A., m., Rezaimanesh, and m., gaeeni (eds.): Effect of heat input on the microstructure and mechanical properties of the high strength and low alloy steel welded joint in quenched and tempered condition (AISI 4340), Metallurgical Engineering, vol. 22, no. 3, pp. 225–238, (2020)
66.
Zurück zum Zitat Mann, V., Holzer, M., Hofmann, K., Korbacher, A., Roth, S., Weidinger, P., Schmidt, M.: Influence of oscillation parameters on melt pool geometry and hot cracking susceptibility during laser beam welding of high strength steels. pp. 1–11 Mann, V., Holzer, M., Hofmann, K., Korbacher, A., Roth, S., Weidinger, P., Schmidt, M.: Influence of oscillation parameters on melt pool geometry and hot cracking susceptibility during laser beam welding of high strength steels. pp. 1–11
67.
Zurück zum Zitat Kang, M., Han, H.N., Kim, C.: Microstructure and solidification crack susceptibility of Al 6014 molten alloy subjected to a spatially oscillated laser beam. Materials. 11(4), 648 (2018)CrossRef Kang, M., Han, H.N., Kim, C.: Microstructure and solidification crack susceptibility of Al 6014 molten alloy subjected to a spatially oscillated laser beam. Materials. 11(4), 648 (2018)CrossRef
68.
Zurück zum Zitat Kang, M., Cheon, J., Kam, D.H., Kim, C.: The hot cracking susceptibility subjected the laser beam oscillation welding on 6XXX aluminum alloy with a partial penetration joint. J. Laser Appl. 33(1), 012032 (2021)CrossRef Kang, M., Cheon, J., Kam, D.H., Kim, C.: The hot cracking susceptibility subjected the laser beam oscillation welding on 6XXX aluminum alloy with a partial penetration joint. J. Laser Appl. 33(1), 012032 (2021)CrossRef
69.
Zurück zum Zitat Tsukamoto, T., Kawanaka, H., Maeda, Y.: Laser narrow gap welding of thick carbon steels using high brightness laser with beam oscillation. pp. 141–146 Tsukamoto, T., Kawanaka, H., Maeda, Y.: Laser narrow gap welding of thick carbon steels using high brightness laser with beam oscillation. pp. 141–146
70.
Zurück zum Zitat Shah, L., Khodabakhshi, F., Gerlich, A.: Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer. J. Manuf. Process. 37, 212–219 (2019)CrossRef Shah, L., Khodabakhshi, F., Gerlich, A.: Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer. J. Manuf. Process. 37, 212–219 (2019)CrossRef
71.
Zurück zum Zitat Yan, F., Qin, Y., Tang, B., Zhou, Y., Gao, Z., Hu, Y., Hu, C., Xiao, Z., Xiao, Z., Wang, C.: Effects of Beam oscillation on microstructural characteristics and mechanical properties in laser welded steel-copper joints. Opt. Laser Technol. 148, 107739 (2022)CrossRef Yan, F., Qin, Y., Tang, B., Zhou, Y., Gao, Z., Hu, Y., Hu, C., Xiao, Z., Xiao, Z., Wang, C.: Effects of Beam oscillation on microstructural characteristics and mechanical properties in laser welded steel-copper joints. Opt. Laser Technol. 148, 107739 (2022)CrossRef
72.
Zurück zum Zitat Russell, K., Quane, S., Robert, G., Andrews, G., Kennedy, B.: Welding of Pyroclastic Deposits: Questions Arising from Experiments. pp. V21G-03 Russell, K., Quane, S., Robert, G., Andrews, G., Kennedy, B.: Welding of Pyroclastic Deposits: Questions Arising from Experiments. pp. V21G-03
73.
Zurück zum Zitat Kabasakaloglu, T.S., Erdogan, M.: Characterisation of figure-eight shaped oscillation laser welding behaviour of 5083 aluminium alloy. Sci. Technol. Weld. Joining. 25(7), 609–616 (2020)CrossRef Kabasakaloglu, T.S., Erdogan, M.: Characterisation of figure-eight shaped oscillation laser welding behaviour of 5083 aluminium alloy. Sci. Technol. Weld. Joining. 25(7), 609–616 (2020)CrossRef
74.
Zurück zum Zitat Wu, Q., Xiao, R., Zou, J., Xu, J.: Weld formation mechanism during fiber laser welding of aluminum alloys with focus rotation and vertical oscillation. J. Manuf. Process. 36, 149–154 (2018)CrossRef Wu, Q., Xiao, R., Zou, J., Xu, J.: Weld formation mechanism during fiber laser welding of aluminum alloys with focus rotation and vertical oscillation. J. Manuf. Process. 36, 149–154 (2018)CrossRef
75.
Zurück zum Zitat Ola, O., Doern, F.: Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int. J. Adv. Manuf. Technol. 80, 3–10 (2015)CrossRef Ola, O., Doern, F.: Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int. J. Adv. Manuf. Technol. 80, 3–10 (2015)CrossRef
76.
Zurück zum Zitat Wang, Z., Oliveira, J., Zeng, Z., Bu, X., Peng, B., Shao, X.: Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 111, 58–65 (2019)CrossRef Wang, Z., Oliveira, J., Zeng, Z., Bu, X., Peng, B., Shao, X.: Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 111, 58–65 (2019)CrossRef
77.
Zurück zum Zitat Liu, T., Mu, Z., Hu, R., Pang, S.: Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization. Int. J. Heat Mass Transf. 140, 346–358 (2019)CrossRef Liu, T., Mu, Z., Hu, R., Pang, S.: Sinusoidal oscillating laser welding of 7075 aluminum alloy: Hydrodynamics, porosity formation and optimization. Int. J. Heat Mass Transf. 140, 346–358 (2019)CrossRef
78.
Zurück zum Zitat He, S., Liu, L., Zhao, Y., Kang, Y., Wang, F., Zhan, X.: Comparative investigation between fiber laser and disk laser: Microstructure feature of 2219 aluminum alloy welded joint using different laser power and welding speed. Opt. Laser Technol. 141, 107121 (2021)CrossRef He, S., Liu, L., Zhao, Y., Kang, Y., Wang, F., Zhan, X.: Comparative investigation between fiber laser and disk laser: Microstructure feature of 2219 aluminum alloy welded joint using different laser power and welding speed. Opt. Laser Technol. 141, 107121 (2021)CrossRef
79.
Zurück zum Zitat Franco, D., Oliveira, J., Santos, T.G., Miranda, R.: Analysis of copper sheets welded by fiber laser with beam oscillation. Opt. Laser Technol. 133, 106563 (2021)CrossRef Franco, D., Oliveira, J., Santos, T.G., Miranda, R.: Analysis of copper sheets welded by fiber laser with beam oscillation. Opt. Laser Technol. 133, 106563 (2021)CrossRef
80.
Zurück zum Zitat Huang, Y., Ansari, M., Asgari, H., Farshidianfar, M.H., Sarker, D., Khamesee, M.B., Toyserkani, E.: Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J. Mater. Process. Technol. 274, 116286 (2019)CrossRef Huang, Y., Ansari, M., Asgari, H., Farshidianfar, M.H., Sarker, D., Khamesee, M.B., Toyserkani, E.: Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J. Mater. Process. Technol. 274, 116286 (2019)CrossRef
81.
Zurück zum Zitat Emamian, A., Farshidianfar, M.H., Khajepour, A.: Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites. J. Alloys Compd. 710, 20–28 (2017)CrossRef Emamian, A., Farshidianfar, M.H., Khajepour, A.: Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites. J. Alloys Compd. 710, 20–28 (2017)CrossRef
82.
Zurück zum Zitat Farshidianfar, M.H.: Control of microstructure in laser additive manufacturing. Univ. Waterloo, (2014) Farshidianfar, M.H.: Control of microstructure in laser additive manufacturing. Univ. Waterloo, (2014)
83.
Zurück zum Zitat Ma, R., Fang, K., Yang, J., Liu, X., Fang, H.: Grain refinement of HAZ in multi-pass welding. J. Mater. Process. Technol. 214(5), 1131–1135 (2014)CrossRef Ma, R., Fang, K., Yang, J., Liu, X., Fang, H.: Grain refinement of HAZ in multi-pass welding. J. Mater. Process. Technol. 214(5), 1131–1135 (2014)CrossRef
84.
Zurück zum Zitat Ke, W., Bu, X., Oliveira, J., Xu, W., Wang, Z., Zeng, Z.: Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 133, 106540 (2021)CrossRef Ke, W., Bu, X., Oliveira, J., Xu, W., Wang, Z., Zeng, Z.: Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Opt. Laser Technol. 133, 106540 (2021)CrossRef
85.
Zurück zum Zitat Wang, J., Wang, C., Meng, X., Hu, X., Yu, Y., Yu, S.: Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding. Opt. Laser Technol. 44(1), 67–70 (2012)CrossRef Wang, J., Wang, C., Meng, X., Hu, X., Yu, Y., Yu, S.: Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding. Opt. Laser Technol. 44(1), 67–70 (2012)CrossRef
86.
Zurück zum Zitat Meng, Y., Gong, M., Zhang, S., Zhang, Y., Gao, M.: Effects of oscillating laser offset on microstructure and properties of dissimilar Al/steel butt-joint. Opt. Lasers Eng. 128, 106037 (2020)CrossRef Meng, Y., Gong, M., Zhang, S., Zhang, Y., Gao, M.: Effects of oscillating laser offset on microstructure and properties of dissimilar Al/steel butt-joint. Opt. Lasers Eng. 128, 106037 (2020)CrossRef
87.
Zurück zum Zitat Tao, W., Yang, S.: Weld Zone porosity elimination process in remote laser welding of AA5182-O aluminum alloy lap-joints. J. Mater. Process. Technol. 286, 116826 (2020)CrossRef Tao, W., Yang, S.: Weld Zone porosity elimination process in remote laser welding of AA5182-O aluminum alloy lap-joints. J. Mater. Process. Technol. 286, 116826 (2020)CrossRef
88.
Zurück zum Zitat Zhang, C., Li, X., Gao, M.: Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool. J. Mater. Res. Technol. 9(4), 9271–9282 (2020)CrossRef Zhang, C., Li, X., Gao, M.: Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool. J. Mater. Res. Technol. 9(4), 9271–9282 (2020)CrossRef
89.
Zurück zum Zitat Kaisheva, D., Angelov, V., Petrov, P.: Simulation of heat transfer at welding with oscillating electron beam. Can. J. Phys. 97(10), 1140–1146 (2019)CrossRef Kaisheva, D., Angelov, V., Petrov, P.: Simulation of heat transfer at welding with oscillating electron beam. Can. J. Phys. 97(10), 1140–1146 (2019)CrossRef
90.
Zurück zum Zitat Farshidianfar, M.H., Khodabakhshi, F., Khajepour, A., Gerlich, A.: Closed-loop deposition of martensitic stainless steel during laser additive manufacturing to control microstructure and mechanical properties. Opt. Lasers Eng. 145, 106680 (2021)CrossRef Farshidianfar, M.H., Khodabakhshi, F., Khajepour, A., Gerlich, A.: Closed-loop deposition of martensitic stainless steel during laser additive manufacturing to control microstructure and mechanical properties. Opt. Lasers Eng. 145, 106680 (2021)CrossRef
91.
Zurück zum Zitat Chen, L., Mi, G., Zhang, X., Wang, C.: Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding. J. Mater. Process. Technol. 298, 117314 (2021)CrossRef Chen, L., Mi, G., Zhang, X., Wang, C.: Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding. J. Mater. Process. Technol. 298, 117314 (2021)CrossRef
92.
Zurück zum Zitat Yang, H., Chen, J., Huda, N., Gerlich, A.P.: Effect of beam wobbling on microstructure and hardness during laser welding of X70 pipeline steel. Sci. Technol. Weld. Joining. 27(5), 326–338 (2022)CrossRef Yang, H., Chen, J., Huda, N., Gerlich, A.P.: Effect of beam wobbling on microstructure and hardness during laser welding of X70 pipeline steel. Sci. Technol. Weld. Joining. 27(5), 326–338 (2022)CrossRef
93.
Zurück zum Zitat Mohan, A., Ceglarek, D., Franciosa, P., Auinger, M.: Numerical study of beam oscillation and its effect on the solidification parameters and grain morphology in remote laser welding of high-strength aluminium alloys. Sci. Technol. Weld. Joining. 28(5), 362–371 (2023)CrossRef Mohan, A., Ceglarek, D., Franciosa, P., Auinger, M.: Numerical study of beam oscillation and its effect on the solidification parameters and grain morphology in remote laser welding of high-strength aluminium alloys. Sci. Technol. Weld. Joining. 28(5), 362–371 (2023)CrossRef
94.
Zurück zum Zitat Davies, G.: Solidification and casting, chap. 6. Appl. Sci. Publishing Co. Lond., (1973) Davies, G.: Solidification and casting, chap. 6. Appl. Sci. Publishing Co. Lond., (1973)
95.
Zurück zum Zitat Li, Y., Bai, Q., Liu, J., Li, H., Du, Q., Zhang, J., Zhuang, L.: The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al-5Ti-1B master alloy. Metall. Mater. Trans. A. 47, 4024–4037 (2016)CrossRef Li, Y., Bai, Q., Liu, J., Li, H., Du, Q., Zhang, J., Zhuang, L.: The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al-5Ti-1B master alloy. Metall. Mater. Trans. A. 47, 4024–4037 (2016)CrossRef
96.
Zurück zum Zitat Morawiec, A., Morawiec, A.: Misorientation Angle and Axis Distributions, Orientations and Rotations: Computations in Crystallographic Textures, pp. 115–127, (2004) Morawiec, A., Morawiec, A.: Misorientation Angle and Axis Distributions, Orientations and Rotations: Computations in Crystallographic Textures, pp. 115–127, (2004)
97.
Zurück zum Zitat Clemens, H., Mayer, S., Scheu, C.: Microstructure and properties of engineering materials, Neutrons and synchrotron radiation in engineering materials science: From fundamentals to applications, pp. 1–20, (2017) Clemens, H., Mayer, S., Scheu, C.: Microstructure and properties of engineering materials, Neutrons and synchrotron radiation in engineering materials science: From fundamentals to applications, pp. 1–20, (2017)
98.
Zurück zum Zitat Jiang, Z., Tao, W., Yu, K., Tan, C., Chen, Y., Li, L., Li, Z.: Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves. Mater. Design. 110, 728–739 (2016)CrossRef Jiang, Z., Tao, W., Yu, K., Tan, C., Chen, Y., Li, L., Li, Z.: Comparative study on fiber laser welding of GH3535 superalloy in continuous and pulsed waves. Mater. Design. 110, 728–739 (2016)CrossRef
99.
Zurück zum Zitat Cui, S., Shi, Y., Sun, K., Gu, S.: Microstructure evolution and mechanical properties of keyhole deep penetration TIG welds of S32101 duplex stainless steel. Mater. Sci. Engineering: A. 709, 214–222 (2018)CrossRef Cui, S., Shi, Y., Sun, K., Gu, S.: Microstructure evolution and mechanical properties of keyhole deep penetration TIG welds of S32101 duplex stainless steel. Mater. Sci. Engineering: A. 709, 214–222 (2018)CrossRef
100.
Zurück zum Zitat Beer, F.P., Johnston, E.R., DeWolf, J.T., Mazurek, D.F.: Mecânica dos Materiais. Amgh Porto Alegre (2011) Beer, F.P., Johnston, E.R., DeWolf, J.T., Mazurek, D.F.: Mecânica dos Materiais. Amgh Porto Alegre (2011)
101.
Zurück zum Zitat Farshidianfar, M.H., Khajepouhor, A., Gerlich, A.: Real-time monitoring and prediction of martensite formation and hardening depth during laser heat treatment. Surf. Coat. Technol. 315, 326–334 (2017)CrossRef Farshidianfar, M.H., Khajepouhor, A., Gerlich, A.: Real-time monitoring and prediction of martensite formation and hardening depth during laser heat treatment. Surf. Coat. Technol. 315, 326–334 (2017)CrossRef
102.
Zurück zum Zitat Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1(3), 145 (1970)CrossRef Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1(3), 145 (1970)CrossRef
103.
Zurück zum Zitat Shahri, S.A., Beidokhti, B., Khaki, V.: Design and manufacture of surface hardening coated electrode based on intermetallic compounds Shahri, S.A., Beidokhti, B., Khaki, V.: Design and manufacture of surface hardening coated electrode based on intermetallic compounds
104.
Zurück zum Zitat Dong, P., Li, H., Sun, D., Gong, W., Liu, J.: Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Design. 45, 524–531 (2013)CrossRef Dong, P., Li, H., Sun, D., Gong, W., Liu, J.: Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Design. 45, 524–531 (2013)CrossRef
105.
Zurück zum Zitat Hao, K., Gao, M.: Effect of beam oscillating behavior on pore inhibition and microstructure evolution mechanisms of laser welded Q235 steel. J. Mater. Res. Technol. 11, 1816–1827 (2021)CrossRef Hao, K., Gao, M.: Effect of beam oscillating behavior on pore inhibition and microstructure evolution mechanisms of laser welded Q235 steel. J. Mater. Res. Technol. 11, 1816–1827 (2021)CrossRef
106.
Zurück zum Zitat Chen, C., Zhou, H., Wang, C., Liu, L., Zhang, Y., Zhang, K.: Laser welding of ultra-high strength steel with different oscillating modes. J. Manuf. Process. 68, 761–769 (2021)CrossRef Chen, C., Zhou, H., Wang, C., Liu, L., Zhang, Y., Zhang, K.: Laser welding of ultra-high strength steel with different oscillating modes. J. Manuf. Process. 68, 761–769 (2021)CrossRef
107.
Zurück zum Zitat Taheri, A., Beidokhti, B., Shayegh Boroujeny, B., Valizadeh, A.: Characterizations of dissimilar S32205/316L welds using austenitic, super-austenitic and super-duplex filler metals. Int. J. Min. Metall. Mater. 27, 119–127 (2020)CrossRef Taheri, A., Beidokhti, B., Shayegh Boroujeny, B., Valizadeh, A.: Characterizations of dissimilar S32205/316L welds using austenitic, super-austenitic and super-duplex filler metals. Int. J. Min. Metall. Mater. 27, 119–127 (2020)CrossRef
108.
Zurück zum Zitat Rahni, M.M., Beidokhti, B., HADDAD-SABZEVAR, M.: Effect of filler metal on microstructure and mechanical properties of manganese–aluminum bronze repair welds. Trans. Nonferrous Met. Soc. China. 27(3), 507–513 (2017)CrossRef Rahni, M.M., Beidokhti, B., HADDAD-SABZEVAR, M.: Effect of filler metal on microstructure and mechanical properties of manganese–aluminum bronze repair welds. Trans. Nonferrous Met. Soc. China. 27(3), 507–513 (2017)CrossRef
109.
Zurück zum Zitat Liu, T., Yan, F., Liu, S., Li, R., Wang, C., Hu, X.: Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy. Opt. Laser Technol. 80, 56–66 (2016)CrossRef Liu, T., Yan, F., Liu, S., Li, R., Wang, C., Hu, X.: Microstructure and mechanical properties of laser-arc hybrid welding joint of GH909 alloy. Opt. Laser Technol. 80, 56–66 (2016)CrossRef
110.
Zurück zum Zitat Okonji, P., Nnuka, E., Odo, J.: Effect of welding current and filler metal types on macrostructure and tensile strength of GTAW welded stainless steel joints. Int. J. Sci. Res. Eng. Trends. 1(1), 9–12 (2015) Okonji, P., Nnuka, E., Odo, J.: Effect of welding current and filler metal types on macrostructure and tensile strength of GTAW welded stainless steel joints. Int. J. Sci. Res. Eng. Trends. 1(1), 9–12 (2015)
111.
Zurück zum Zitat Li, J., Sun, Q., Liu, Y., Zhen, Z., Sun, Q., Feng, J.: Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J. Manuf. Process. 50, 629–637 (2020)CrossRef Li, J., Sun, Q., Liu, Y., Zhen, Z., Sun, Q., Feng, J.: Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J. Manuf. Process. 50, 629–637 (2020)CrossRef
112.
Zurück zum Zitat Hao, K., Wang, H., Gao, M., Wu, R., Zeng, X.: Laser welding of AZ31B magnesium alloy with beam oscillation. J. Mater. Res. Technol. 8(3), 3044–3053 (2019)CrossRef Hao, K., Wang, H., Gao, M., Wu, R., Zeng, X.: Laser welding of AZ31B magnesium alloy with beam oscillation. J. Mater. Res. Technol. 8(3), 3044–3053 (2019)CrossRef
113.
Zurück zum Zitat Vakili-Farahani, F., Lungershausen, J., Wasmer, K.: Process parameter optimization for wobbling laser spot welding of Ti6Al4V alloy. Phys. Procedia. 83, 483–493 (2016)CrossRef Vakili-Farahani, F., Lungershausen, J., Wasmer, K.: Process parameter optimization for wobbling laser spot welding of Ti6Al4V alloy. Phys. Procedia. 83, 483–493 (2016)CrossRef
114.
Zurück zum Zitat Kar, J., Roy, S.K., Roy, G.G.: Influence of beam oscillation in electron beam welding of Ti-6AL-4V. Int. J. Adv. Manuf. Technol. 94, 4531–4541 (2018)CrossRef Kar, J., Roy, S.K., Roy, G.G.: Influence of beam oscillation in electron beam welding of Ti-6AL-4V. Int. J. Adv. Manuf. Technol. 94, 4531–4541 (2018)CrossRef
115.
Zurück zum Zitat Dimatteo, V., Ascari, A., Fortunato, A.: Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization. J. Manuf. Process. 44, 158–165 (2019)CrossRef Dimatteo, V., Ascari, A., Fortunato, A.: Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization. J. Manuf. Process. 44, 158–165 (2019)CrossRef
116.
Zurück zum Zitat Khodabakhshi, F., Shah, L., Gerlich, A.: Dissimilar laser welding of an AA6022-AZ31 lap-joint by using Ni-interlayer: Novel beam-wobbling technique, processing parameters, and metallurgical characterization. Opt. Laser Technol. 112, 349–362 (2019)CrossRef Khodabakhshi, F., Shah, L., Gerlich, A.: Dissimilar laser welding of an AA6022-AZ31 lap-joint by using Ni-interlayer: Novel beam-wobbling technique, processing parameters, and metallurgical characterization. Opt. Laser Technol. 112, 349–362 (2019)CrossRef
117.
Zurück zum Zitat Li, L., Gong, J., Xia, H., Peng, G., Hao, Y., Meng, S., Wang, J.: Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy. J. Mater. Res. Technol. 11, 19–32 (2021)CrossRef Li, L., Gong, J., Xia, H., Peng, G., Hao, Y., Meng, S., Wang, J.: Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy. J. Mater. Res. Technol. 11, 19–32 (2021)CrossRef
Metadaten
Titel
Laser Wobble Welding Process: A Review on Metallurgical, Mechanical, and Geometrical Characteristics and Defects
verfasst von
Shahin Sanati
Seyedeh Fatemeh Nabavi
Reihaneh Esmaili
Anooshiravan Farshidianfar
Publikationsdatum
07.05.2024
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-024-00252-x

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.