Skip to main content

10.05.2024 | Original Research Article

Optimizing Thermomechanical Processing Routes to Achieve Desired Grain Size in SS 304 Using Response Surface Methodology

verfasst von: Ashish Jain, Abhinav Varshney

Erschienen in: Metallography, Microstructure, and Analysis

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Controlling grain size in stainless steel 304 (SS304) is vital for tailoring its properties for specific applications. In this study, we have employed response surface methodology (RSM) to optimize the processing routes to achieve the desired grain size in SS304 through a combination of cold rolling and annealing. By utilizing the face-centered central composite design of RSM, experimental runs were generated, considering % cold rolling and annealing time as the input factors. Subsequently, based on the experimental runs of RSM, SS304 was subjected to cold rolling to a different extent, followed by annealing at a constant temperature for varying durations. As a result of variation in thermomechanical treatment, steels with various grain sizes were developed which is treated as the output of the experimental runs. An analysis of variance (ANOVA) was conducted on the experimental data. Findings show a strong correlation between SS304 grain size, cold rolling reduction, and annealing duration. The proposed model precisely predicts grain size evolution, aiding effective thermomechanical processing optimization which could be useful for various thermomechanical processing industries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871–1881 (2003)CrossRef H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871–1881 (2003)CrossRef
2.
Zurück zum Zitat R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981 (2006)CrossRef R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881–981 (2006)CrossRef
3.
Zurück zum Zitat M. Toofaninejad, M.N. Ahmadabadi, Effect of equal channel angular pressing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. Adv. Mater. Res. 829, 86–90 (2014)CrossRef M. Toofaninejad, M.N. Ahmadabadi, Effect of equal channel angular pressing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. Adv. Mater. Res. 829, 86–90 (2014)CrossRef
4.
Zurück zum Zitat A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753–765 (2003)CrossRef A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753–765 (2003)CrossRef
5.
Zurück zum Zitat Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221–1227 (1998)CrossRef Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39, 1221–1227 (1998)CrossRef
6.
Zurück zum Zitat M. Tikhonova, Y. Kuzminova, A. Belyakov, R. Kaibyshev, Nanocrystalline S304H austenitic stainless steel processed by multiple forging. Rev. Adv. Mater. Sci. 31, 68–73 (2012) M. Tikhonova, Y. Kuzminova, A. Belyakov, R. Kaibyshev, Nanocrystalline S304H austenitic stainless steel processed by multiple forging. Rev. Adv. Mater. Sci. 31, 68–73 (2012)
7.
Zurück zum Zitat K.E. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef K.E. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef
8.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, EBSD study of a hot deformed austenitic stainless steel. Mater. Sci. Eng. A. 538, 236–245 (2012)CrossRef H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, EBSD study of a hot deformed austenitic stainless steel. Mater. Sci. Eng. A. 538, 236–245 (2012)CrossRef
9.
Zurück zum Zitat S. Saadatkia, H. Mirzadeh, J.-M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A. 636, 196–202 (2015)CrossRef S. Saadatkia, H. Mirzadeh, J.-M. Cabrera, Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater. Sci. Eng. A. 636, 196–202 (2015)CrossRef
10.
Zurück zum Zitat G. Sun, M. Zhao, L. Du, H. Wu, Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 184, 111674 (2022)CrossRef G. Sun, M. Zhao, L. Du, H. Wu, Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 184, 111674 (2022)CrossRef
11.
Zurück zum Zitat M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, R. Mahmudi, Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int. J. Plast. 160, 103502 (2023)CrossRef M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, R. Mahmudi, Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int. J. Plast. 160, 103502 (2023)CrossRef
12.
Zurück zum Zitat D. Maréchal, Linkage between mechanical properties and phase transformations in a 301LN austenitic stainless steel (2011) D. Maréchal, Linkage between mechanical properties and phase transformations in a 301LN austenitic stainless steel (2011)
13.
Zurück zum Zitat M. Naghizadeh, H. Mirzadeh, Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res. Int. 90, 1900153 (2019)CrossRef M. Naghizadeh, H. Mirzadeh, Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res. Int. 90, 1900153 (2019)CrossRef
14.
Zurück zum Zitat Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int. 53, 1224–1230 (2013)CrossRef Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel. ISIJ Int. 53, 1224–1230 (2013)CrossRef
15.
Zurück zum Zitat A. Järvenpää, M. Jaskari, J. Man, L.P. Karjalainen, Austenite stability in reversion-treated structures of a 301LN steel under tensile loading. Mater Charact. 127, 12–26 (2017)CrossRef A. Järvenpää, M. Jaskari, J. Man, L.P. Karjalainen, Austenite stability in reversion-treated structures of a 301LN steel under tensile loading. Mater Charact. 127, 12–26 (2017)CrossRef
16.
Zurück zum Zitat A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, H.S. Baghbadorani, Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Mater. Des. 46, 49–53 (2013)CrossRef A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, H.S. Baghbadorani, Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Mater. Des. 46, 49–53 (2013)CrossRef
19.
Zurück zum Zitat V. Shrinivas, S.K. Varma, L.E. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Mater. Trans. A. 26, 661–671 (1995)CrossRef V. Shrinivas, S.K. Varma, L.E. Murr, Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall. Mater. Trans. A. 26, 661–671 (1995)CrossRef
20.
Zurück zum Zitat K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 31, 1431–1437 (1991)CrossRef K. Tomimura, S. Takaki, Y. Tokunaga, Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 31, 1431–1437 (1991)CrossRef
21.
Zurück zum Zitat S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater. Sci. Eng. A. 759, 90–96 (2019)CrossRef S. Kheiri, H. Mirzadeh, M. Naghizadeh, Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater. Sci. Eng. A. 759, 90–96 (2019)CrossRef
22.
Zurück zum Zitat M. Zhao, H. Wu, J. Lu, G. Sun, L. Du, Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel. Mater Charact. 194, 112360 (2022)CrossRef M. Zhao, H. Wu, J. Lu, G. Sun, L. Du, Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel. Mater Charact. 194, 112360 (2022)CrossRef
23.
Zurück zum Zitat Y. Ma, J.-E. Jin, Y.-K. Lee, A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scr. Mater. 52, 1311–1315 (2005)CrossRef Y. Ma, J.-E. Jin, Y.-K. Lee, A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scr. Mater. 52, 1311–1315 (2005)CrossRef
24.
Zurück zum Zitat M. Eskandari, A. Kermanpur, A. Najafizadeh, Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metall. Mater. Trans. A. 40, 2241–2249 (2009)CrossRef M. Eskandari, A. Kermanpur, A. Najafizadeh, Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metall. Mater. Trans. A. 40, 2241–2249 (2009)CrossRef
25.
Zurück zum Zitat R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall. Mater. Trans. A. 41, 3–12 (2010)CrossRef R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall. Mater. Trans. A. 41, 3–12 (2010)CrossRef
26.
Zurück zum Zitat G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra, Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater Charact. 110, 228–235 (2015)CrossRef G.S. Sun, L.X. Du, J. Hu, H. Xie, H.Y. Wu, R.D.K. Misra, Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment. Mater Charact. 110, 228–235 (2015)CrossRef
27.
Zurück zum Zitat A. Jain, A. Varshney, Effect of grain size and dislocation density on the work hardening behavior of SS 304. J. Mater. Eng. Perform. 12, 1–18 (2024) A. Jain, A. Varshney, Effect of grain size and dislocation density on the work hardening behavior of SS 304. J. Mater. Eng. Perform. 12, 1–18 (2024)
28.
Zurück zum Zitat A. Di Schino, M. Barteri, J.M. Kenny, Effects of grain size on the properties of a low nickel austenitic stainless steel. J. Mater. Sci. 38, 4725–4733 (2003)CrossRef A. Di Schino, M. Barteri, J.M. Kenny, Effects of grain size on the properties of a low nickel austenitic stainless steel. J. Mater. Sci. 38, 4725–4733 (2003)CrossRef
29.
Zurück zum Zitat A. Di Schino, J.M. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57, 3182–3185 (2003)CrossRef A. Di Schino, J.M. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57, 3182–3185 (2003)CrossRef
30.
Zurück zum Zitat A. Jain, A. Varshney, A critical review on deformation-induced transformation kinetics of austenitic stainless steels. Mater. Sci. Technol. 40, 75–106 (2024)CrossRef A. Jain, A. Varshney, A critical review on deformation-induced transformation kinetics of austenitic stainless steels. Mater. Sci. Technol. 40, 75–106 (2024)CrossRef
31.
Zurück zum Zitat A. El Hami, P. Pougnet, Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization (Elsevier, New York, 2020) A. El Hami, P. Pougnet, Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization (Elsevier, New York, 2020)
32.
Zurück zum Zitat R.U. Owolabi, M.A. Usman, A.J. Kehinde, Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J. King Saud Univ. Eng. Sci. 30, 22–30 (2018) R.U. Owolabi, M.A. Usman, A.J. Kehinde, Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J. King Saud Univ. Eng. Sci. 30, 22–30 (2018)
33.
Zurück zum Zitat M.F. McGuire, Stainless Steels for Design Engineers (ASM International, London, 2008)CrossRef M.F. McGuire, Stainless Steels for Design Engineers (ASM International, London, 2008)CrossRef
34.
Zurück zum Zitat C. Nickel, ASM Specialty Handbook (ASM International Materials Park, OH, 2000), pp.44072–44073 C. Nickel, ASM Specialty Handbook (ASM International Materials Park, OH, 2000), pp.44072–44073
35.
Zurück zum Zitat G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1976) G.E. Dieter, D. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1976)
36.
Zurück zum Zitat H. Abrams, Grain size measurement by the intercept method. Metallography. 4, 59–78 (1971)CrossRef H. Abrams, Grain size measurement by the intercept method. Metallography. 4, 59–78 (1971)CrossRef
Metadaten
Titel
Optimizing Thermomechanical Processing Routes to Achieve Desired Grain Size in SS 304 Using Response Surface Methodology
verfasst von
Ashish Jain
Abhinav Varshney
Publikationsdatum
10.05.2024
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-024-01077-y

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.