Skip to main content

17.05.2024 | Research

Performance Degradation Caused by Ionization of the Released Gas Molecules in W-Band Gyrotron Traveling Wave Tube Based on a Simplified Ionization Model

verfasst von: Yu Wang, Guo Liu, Wei Jiang, Yelei Yao, Jianxun Wang, Yong Luo

Erschienen in: Journal of Infrared, Millimeter, and Terahertz Waves

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Analysis of the performance degradation for W-band lossy ceramic-loaded gyrotron traveling wave tubes (gyro-TWTs) caused by ionization of the released gas molecules is presented in this paper. The gas is released from the lossy ceramics during high average or continuous wave operation and ionized by colliding with the high-energy gyrating electrons. A potential well will be formed by the diffusion and accumulation of the ionization particles after the collision and then degrade the gyro-TWT performance. This process has been simulated based on a simplified model by introducing an equivalent ionization source combining ions and electrons. With a vacuum of \(5.1 \times 10^{-5}\) Pa, the theoretically calculated initial energy and equivalent ionization current are 0.01 eV and 0.5 A, respectively. It leads to a deterioration in the output power stability of the gyro-TWT. The performance degradation including spectrum and field pattern caused by gas ionization is also given and analyzed. One of the primary causes is the quality (pitch factor and velocity spread) degradation of the electron beam. According to the simulation and hot test experiments, the vacuum should be maintained below \(2.1 \times 10^{-6}\) Pa for stabilizing the amplified operation.
Literatur
1.
Zurück zum Zitat K. R. Chu. The electron cyclotron maser. Reviews of modern physics, 76(2):489, 2004.CrossRef K. R. Chu. The electron cyclotron maser. Reviews of modern physics, 76(2):489, 2004.CrossRef
2.
Zurück zum Zitat Svilen Sabchevski, Mikhail Glyavin, Seitaro Mitsudo, Yoshinori Tatematsu, and Toshitaka Idehara. Novel and emerging applications of the gyrotrons worldwide: current status and prospects. Journal of Infrared, Millimeter, and Terahertz Waves, 42(7):715–741, 2021.CrossRef Svilen Sabchevski, Mikhail Glyavin, Seitaro Mitsudo, Yoshinori Tatematsu, and Toshitaka Idehara. Novel and emerging applications of the gyrotrons worldwide: current status and prospects. Journal of Infrared, Millimeter, and Terahertz Waves, 42(7):715–741, 2021.CrossRef
3.
Zurück zum Zitat Guo Liu, Wei Jiang, Yelei Yao, Yu Wang, Weijie Wang, Yingjian Cao, Jianxun Wang, and Yong Luo. High average power test of a W-band broadband gyrotron traveling wave tube. IEEE Electron Device Letters, 43(6):950–953, 2022.CrossRef Guo Liu, Wei Jiang, Yelei Yao, Yu Wang, Weijie Wang, Yingjian Cao, Jianxun Wang, and Yong Luo. High average power test of a W-band broadband gyrotron traveling wave tube. IEEE Electron Device Letters, 43(6):950–953, 2022.CrossRef
4.
Zurück zum Zitat Wei Jiang, Boxin Dai, Chaoxuan Lu, Guo Liu, Jianxun Wang, Youlei Pu, and Yong Luo. High average power investigation of dielectric dissipation in the W-band gyro-TWT. IEEE Transactions on Electron Devices, 69(7):3926–3932, 2022.CrossRef Wei Jiang, Boxin Dai, Chaoxuan Lu, Guo Liu, Jianxun Wang, Youlei Pu, and Yong Luo. High average power investigation of dielectric dissipation in the W-band gyro-TWT. IEEE Transactions on Electron Devices, 69(7):3926–3932, 2022.CrossRef
5.
Zurück zum Zitat Guo Liu, Wei Jiang, Yelei Yao, Yu Wang, Yingjian Cao Jianxun Wang, and Yong Luo. Long pulse and high duty operation of a W-band gyrotron traveling wave tube. IEEE Electron Device Letters, 2023. Guo Liu, Wei Jiang, Yelei Yao, Yu Wang, Yingjian Cao Jianxun Wang, and Yong Luo. Long pulse and high duty operation of a W-band gyrotron traveling wave tube. IEEE Electron Device Letters, 2023.
6.
Zurück zum Zitat G. G. Denisov, V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte. Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys. Rev. Lett., 81:5680–5683, Dec 1998.CrossRef G. G. Denisov, V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte. Gyrotron traveling wave amplifier with a helical interaction waveguide. Phys. Rev. Lett., 81:5680–5683, Dec 1998.CrossRef
7.
Zurück zum Zitat Adrian W. Cross, Wenlong He, Alan D. R. Phelps, Kevin Ronald, Colin G. Whyte, Alan R. Young, Craig W. Robertson, E. G. Rafferty, and Jeffery Thomson. Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Applied Physics Letters, 90:253501, 2007. Adrian W. Cross, Wenlong He, Alan D. R. Phelps, Kevin Ronald, Colin G. Whyte, Alan R. Young, Craig W. Robertson, E. G. Rafferty, and Jeffery Thomson. Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Applied Physics Letters, 90:253501, 2007.
8.
Zurück zum Zitat Sergey V. Samsonov, Gregory G. Denisov, Igor G. Gachev, and Alexandr A. Bogdashov. Cw operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube. IEEE Electron Device Letters, 41:773–776, 2020.CrossRef Sergey V. Samsonov, Gregory G. Denisov, Igor G. Gachev, and Alexandr A. Bogdashov. Cw operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube. IEEE Electron Device Letters, 41:773–776, 2020.CrossRef
9.
Zurück zum Zitat Jagadishwar R. Sirigiri, Michael A. Shapiro, and Richard J. Temkin. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Physical Review Letters, 90 25 Pt 1:258302, 2003. Jagadishwar R. Sirigiri, Michael A. Shapiro, and Richard J. Temkin. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier. Physical Review Letters, 90 25 Pt 1:258302, 2003.
10.
Zurück zum Zitat Jagadishwar R. Sirigiri, Kenneth E. Kreischer, J. S. Machuzak, Ivan Mastovsky, Michael A. Shapiro, and Richard J. Temkin. Photonic-band-gap resonator gyrotron. Physical Review Letters, 86 24:5628–31, 2001. Jagadishwar R. Sirigiri, Kenneth E. Kreischer, J. S. Machuzak, Ivan Mastovsky, Michael A. Shapiro, and Richard J. Temkin. Photonic-band-gap resonator gyrotron. Physical Review Letters, 86 24:5628–31, 2001.
11.
Zurück zum Zitat Chaohai Du, Tsun-Hsu Chang, Pu kun Liu, Yi Huang, P. X. Jiang, Shou xi Xu, Zhihui Geng, Bao liang Hao, Liu Xiao, Gaofeng Liu, Zheng-Di Li, and S. H. Shi. Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit. IEEE Transactions on Electron Devices, 60:2388–2394, 2013. Chaohai Du, Tsun-Hsu Chang, Pu kun Liu, Yi Huang, P. X. Jiang, Shou xi Xu, Zhihui Geng, Bao liang Hao, Liu Xiao, Gaofeng Liu, Zheng-Di Li, and S. H. Shi. Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit. IEEE Transactions on Electron Devices, 60:2388–2394, 2013.
12.
Zurück zum Zitat David B. Mcdermott, H. H. Song, Yosuke Hirata, A. T. Lin, Tsun-Hsu Chang, H. L. Hsu, K. R. Chu, and Neville C. Luhmann. Design of a W-band te\(_{01}\) gyro-TWT with high power and broadband capabilities. 2002. David B. Mcdermott, H. H. Song, Yosuke Hirata, A. T. Lin, Tsun-Hsu Chang, H. L. Hsu, K. R. Chu, and Neville C. Luhmann. Design of a W-band te\(_{01}\) gyro-TWT with high power and broadband capabilities. 2002.
13.
Zurück zum Zitat Günter Dammertz. Vacuum requirements in high power microwave tubes. Vacuum, 46(8-10):785–788, 1995.CrossRef Günter Dammertz. Vacuum requirements in high power microwave tubes. Vacuum, 46(8-10):785–788, 1995.CrossRef
14.
Zurück zum Zitat AS Gilmour, D Thelen, A MacMullen, MA Kodis, R Reynolds, and R Emerson. Ion instabilities initiated in the gun of a linear beam microwave tube. IEEE transactions on plasma science, 32(3):1251–1261, 2004.CrossRef AS Gilmour, D Thelen, A MacMullen, MA Kodis, R Reynolds, and R Emerson. Ion instabilities initiated in the gun of a linear beam microwave tube. IEEE transactions on plasma science, 32(3):1251–1261, 2004.CrossRef
15.
Zurück zum Zitat WM Manheimer, HP Freund, B Levush, and TM Antonsen Jr. Theory and simulation of ion noise in microwave tubes. Physics of plasmas, 8(1):297–320, 2001.CrossRef WM Manheimer, HP Freund, B Levush, and TM Antonsen Jr. Theory and simulation of ion noise in microwave tubes. Physics of plasmas, 8(1):297–320, 2001.CrossRef
16.
Zurück zum Zitat Shenggang Liu, Robert J Barker, Dajun Zhu, Yung Yan, and Hong Gao. Basic theoretical formulations of plasma microwave electronics. I. a fluid model analysis of electron beam-wave interactions. IEEE Transactions on Plasma Science, 28(6):2135–2151, 2000. Shenggang Liu, Robert J Barker, Dajun Zhu, Yung Yan, and Hong Gao. Basic theoretical formulations of plasma microwave electronics. I. a fluid model analysis of electron beam-wave interactions. IEEE Transactions on Plasma Science, 28(6):2135–2151, 2000.
17.
Zurück zum Zitat Shenggang Liu, Robert J Barker, Yung Yan, and Dajun Zhu. Basic theoretical formulation of plasma microwave electronics. II. kinetic theory of electron beam-wave interactions. IEEE transactions on plasma science, 28(6):2152–2165, 2000. Shenggang Liu, Robert J Barker, Yung Yan, and Dajun Zhu. Basic theoretical formulation of plasma microwave electronics. II. kinetic theory of electron beam-wave interactions. IEEE transactions on plasma science, 28(6):2152–2165, 2000.
18.
Zurück zum Zitat Gennadiy I Zaginaylov, Vitaliy I Shcherbinin, K Schuenemann, and Manfred K Thumm. Influence of background plasma on electromagnetic properties of ”cold” gyrotron cavity. IEEE transactions on plasma science, 34(3):512–517, 2006. Gennadiy I Zaginaylov, Vitaliy I Shcherbinin, K Schuenemann, and Manfred K Thumm. Influence of background plasma on electromagnetic properties of ”cold” gyrotron cavity. IEEE transactions on plasma science, 34(3):512–517, 2006.
19.
Zurück zum Zitat IA Vdovichenko and GA Markov. Features of the dispersion characteristics of nonuniform plasma waveguides in a longitudinal magnetic field. Radiophysics and Quantum Electronics, 51(5):392–403, 2008.CrossRef IA Vdovichenko and GA Markov. Features of the dispersion characteristics of nonuniform plasma waveguides in a longitudinal magnetic field. Radiophysics and Quantum Electronics, 51(5):392–403, 2008.CrossRef
20.
Zurück zum Zitat VI Shycherbinin, GI Zaginaylov, and K Schuenemann. Influence of background plasma on electromagnetic properties of coaxial gyrotron cavity. 2012. VI Shycherbinin, GI Zaginaylov, and K Schuenemann. Influence of background plasma on electromagnetic properties of coaxial gyrotron cavity. 2012.
21.
Zurück zum Zitat Andreas Schlaich, Chuanren Wu, Ioannis Pagonakis, Konstantinos Avramidis, Stefan Illy, Gerd Gantenbein, John Jelonnek, and Manfred Thumm. Frequency-based investigation of charge neutralization processes and thermal cavity expansion in gyrotrons. Journal of Infrared, Millimeter, and Terahertz Waves, 36(9):797–818, 2015.CrossRef Andreas Schlaich, Chuanren Wu, Ioannis Pagonakis, Konstantinos Avramidis, Stefan Illy, Gerd Gantenbein, John Jelonnek, and Manfred Thumm. Frequency-based investigation of charge neutralization processes and thermal cavity expansion in gyrotrons. Journal of Infrared, Millimeter, and Terahertz Waves, 36(9):797–818, 2015.CrossRef
22.
Zurück zum Zitat Andreas Schlaich. Time-dependent spectrum analysis of high power gyrotrons, volume 6. KIT Scientific Publishing, 2015. Andreas Schlaich. Time-dependent spectrum analysis of high power gyrotrons, volume 6. KIT Scientific Publishing, 2015.
23.
Zurück zum Zitat Andreas Schlaich, Gerd Gantenbein, Stefan Illy, John Jelonnek, and Manfred Thumm. Observation of discrete frequency hopping in MW-class gyrotrons during long-pulse operation. IEEE Transactions on Electron Devices, 62(9):3049–3055, 2015.CrossRef Andreas Schlaich, Gerd Gantenbein, Stefan Illy, John Jelonnek, and Manfred Thumm. Observation of discrete frequency hopping in MW-class gyrotrons during long-pulse operation. IEEE Transactions on Electron Devices, 62(9):3049–3055, 2015.CrossRef
24.
Zurück zum Zitat Jixiong Xiao, Zhijiang Wang, Jun Chen, and Changhai Liu. Electromagnetic waves dispersion and interaction of an annular beam-ion channel system in plasma waveguide. Advances in Mathematical Physics, 2017, 2017. Jixiong Xiao, Zhijiang Wang, Jun Chen, and Changhai Liu. Electromagnetic waves dispersion and interaction of an annular beam-ion channel system in plasma waveguide. Advances in Mathematical Physics, 2017, 2017.
25.
Zurück zum Zitat Gennadiy I Zaginaylov, Vitaliy I Shcherbinin, and Klaus Schuenemann. Influence of background plasma on operation efficiency of high-power continuous wave (CW) gyrotrons. Frequenz, 62(9-10):236–239, 2008. Gennadiy I Zaginaylov, Vitaliy I Shcherbinin, and Klaus Schuenemann. Influence of background plasma on operation efficiency of high-power continuous wave (CW) gyrotrons. Frequenz, 62(9-10):236–239, 2008.
26.
Zurück zum Zitat Günter Dammertz, S Alberti, Andreas Arnold, Edith Borie, V Erckmann, Gerd Gantenbein, E Giguet, Roland Heidinger, JP Hogge, Stefan Illy, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator. IEEE transactions on plasma science, 30(3):808–818, 2002. Günter Dammertz, S Alberti, Andreas Arnold, Edith Borie, V Erckmann, Gerd Gantenbein, E Giguet, Roland Heidinger, JP Hogge, Stefan Illy, et al. Development of a 140-GHz 1-MW continuous wave gyrotron for the W7-X stellarator. IEEE transactions on plasma science, 30(3):808–818, 2002.
27.
Zurück zum Zitat Guo Liu, Yu Wang, Weijie Wang, Wei Jiang, Jianxun Wang, and Yong Luo. Influence of the background plasma on the performance for X-band gyrotron traveling wave tubes. In 2021 22nd International Vacuum Electronics Conference (IVEC), pages 1–2. IEEE, 2021. Guo Liu, Yu Wang, Weijie Wang, Wei Jiang, Jianxun Wang, and Yong Luo. Influence of the background plasma on the performance for X-band gyrotron traveling wave tubes. In 2021 22nd International Vacuum Electronics Conference (IVEC), pages 1–2. IEEE, 2021.
28.
Zurück zum Zitat Boris M Smirnov. Physics of ionized gases. John Wiley & Sons, 2008. Boris M Smirnov. Physics of ionized gases. John Wiley & Sons, 2008.
29.
Zurück zum Zitat Martin Reiser. Theory and design of charged particle beams. John Wiley & Sons, 2008. Martin Reiser. Theory and design of charged particle beams. John Wiley & Sons, 2008.
30.
Zurück zum Zitat C Benjamin Nakhosteen and Karl Jousten. Handbook of vacuum technology. John Wiley & Sons, 2016. C Benjamin Nakhosteen and Karl Jousten. Handbook of vacuum technology. John Wiley & Sons, 2016.
Metadaten
Titel
Performance Degradation Caused by Ionization of the Released Gas Molecules in W-Band Gyrotron Traveling Wave Tube Based on a Simplified Ionization Model
verfasst von
Yu Wang
Guo Liu
Wei Jiang
Yelei Yao
Jianxun Wang
Yong Luo
Publikationsdatum
17.05.2024
Verlag
Springer US
Erschienen in
Journal of Infrared, Millimeter, and Terahertz Waves
Print ISSN: 1866-6892
Elektronische ISSN: 1866-6906
DOI
https://doi.org/10.1007/s10762-024-00988-9