Skip to main content
Erschienen in: Fire Technology 6/2023

07.08.2023

Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved Wildfire Spread Behavior

verfasst von: John Burge, Matthew R. Bonanni, R. Lily Hu, Matthias Ihme

Erschienen in: Fire Technology | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing incidence and severity of wildfires underscores the necessity of accurately predicting their behavior. While high-fidelity models derived from first principles offer physical accuracy, they are too computationally expensive for use in real-time fire response. Low-fidelity models sacrifice some physical accuracy and generalizability via the integration of empirical measurements, but enable real-time simulations for operational use in fire response. Machine learning techniques have demonstrated the ability to bridge these objectives by learning first-principles physics while achieving computational speedups. While deep learning approaches have demonstrated the ability to predict wildfire propagation over large time periods, time-resolved fire-spread predictions are needed for active fire management. In this work, we evaluate the ability of deep learning approaches in accurately modeling the time-resolved dynamics of wildfires. We use an autoregressive process in which a convolutional recurrent deep learning model makes predictions that propagate a wildfire over 15 min increments. We apply the model to four simulated datasets of increasing complexity, containing both field fires with homogeneous fuel distribution as well as real-world topologies sampled from the California region of the United States. We show that even after 100 autoregressive predictions representing more than 24 h of simulated fire spread, the resulting models generate stable and realistic propagation dynamics, achieving a Jaccard score between 0.89 and 0.94 when predicting the resulting fire scar. The inference time of the deep learning models are examined and compared, and directions for future work are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Covington WW, Moore MM (1994) Southwestern ponderosa forest structure: changes since Euro-American settlement. J Forest 92:39–47 Covington WW, Moore MM (1994) Southwestern ponderosa forest structure: changes since Euro-American settlement. J Forest 92:39–47
2.
Zurück zum Zitat Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–943CrossRef Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–943CrossRef
3.
Zurück zum Zitat Mueller SE, Thode AE, Margolis EQ, Yocom LL, Young JD, Iniguez JM (2020) Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For Ecol Manage 460:117861CrossRef Mueller SE, Thode AE, Margolis EQ, Yocom LL, Young JD, Iniguez JM (2020) Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For Ecol Manage 460:117861CrossRef
4.
Zurück zum Zitat Thomas D, Butry D, Gilbert S, Webb D, Fung J (2017) The costs and losses of wildfires: a literature survey. NIST Special Publication 1215. National Institute of Standards and Technology, Gaithersburg Thomas D, Butry D, Gilbert S, Webb D, Fung J (2017) The costs and losses of wildfires: a literature survey. NIST Special Publication 1215. National Institute of Standards and Technology, Gaithersburg
5.
Zurück zum Zitat Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T (2017) Mortality due to vegetation fire-originated PM2.5 exposure in Europe-Assessment for the years 2005 and 2008. Environ Health Perspect 125:30–37CrossRef Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T (2017) Mortality due to vegetation fire-originated PM2.5 exposure in Europe-Assessment for the years 2005 and 2008. Environ Health Perspect 125:30–37CrossRef
6.
Zurück zum Zitat van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9:697–720CrossRef van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9:697–720CrossRef
7.
Zurück zum Zitat Bakhshaii A, Johnson EA (2019) A review of a new generation of wildfire-atmosphere modeling. Can J For Res 49:565–574CrossRef Bakhshaii A, Johnson EA (2019) A review of a new generation of wildfire-atmosphere modeling. Can J For Res 49:565–574CrossRef
8.
Zurück zum Zitat Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1. Physical and quasi-physical models. Int J Wildl Fire 18:349–368CrossRef Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 1. Physical and quasi-physical models. Int J Wildl Fire 18:349–368CrossRef
9.
Zurück zum Zitat Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 2. Empirical and quasi-empirical models. Int J Wildl Fire 18:369–386CrossRef Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 2. Empirical and quasi-empirical models. Int J Wildl Fire 18:369–386CrossRef
10.
Zurück zum Zitat Sullivan AL (2009) Wildland surface fire spread modelling, 199–2007. 3. Simulation and mathematical analogue models. Int J Wildl Fire 18:387–403CrossRef Sullivan AL (2009) Wildland surface fire spread modelling, 199–2007. 3. Simulation and mathematical analogue models. Int J Wildl Fire 18:387–403CrossRef
11.
Zurück zum Zitat Linn RR, Harlow FH (1997) FIRETEC: a transport description of wildfire behavior, LA-UR-97-3920. Los Alamos National Laboratory, Los Alamos Linn RR, Harlow FH (1997) FIRETEC: a transport description of wildfire behavior, LA-UR-97-3920. Los Alamos National Laboratory, Los Alamos
12.
Zurück zum Zitat Larini M, Giroud F, Porterie B, Loraud JC (1998) A multiphase formulation for fire propagation in heterogeneous combustible media. Int J Heat Mass Transf 41:881–897CrossRefMATH Larini M, Giroud F, Porterie B, Loraud JC (1998) A multiphase formulation for fire propagation in heterogeneous combustible media. Int J Heat Mass Transf 41:881–897CrossRefMATH
13.
Zurück zum Zitat Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildl Fire 16:1–22CrossRef Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildl Fire 16:1–22CrossRef
14.
Zurück zum Zitat Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden
15.
Zurück zum Zitat P. L. Andrews PL (1986) BEHAVE: fire behavior prediction and fuel modeling system–BURN Subsystem, part 1, General Technical Report INT-194. USDA Forest Service, Intermountain Research Station, Ogden P. L. Andrews PL (1986) BEHAVE: fire behavior prediction and fuel modeling system–BURN Subsystem, part 1, General Technical Report INT-194. USDA Forest Service, Intermountain Research Station, Ogden
16.
Zurück zum Zitat Finney MA (1998) FARSITE: fire area simulator–model development and evaluation. Research Paper RMRS-RP-4. USDA Forest Service, Rocky Mountain Research Station. Revised 2004 Finney MA (1998) FARSITE: fire area simulator–model development and evaluation. Research Paper RMRS-RP-4. USDA Forest Service, Rocky Mountain Research Station. Revised 2004
17.
Zurück zum Zitat Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD (2020) A review of machine learning applications in wildfire science and management. Environ Rev 28:478–505CrossRef Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD (2020) A review of machine learning applications in wildfire science and management. Environ Rev 28:478–505CrossRef
18.
Zurück zum Zitat Ihme M, Chung WT, Mishra AA (2022) Combustion machine learning: principles, progress and prospects. Prog Energy Combust Sci 91:101010CrossRef Ihme M, Chung WT, Mishra AA (2022) Combustion machine learning: principles, progress and prospects. Prog Energy Combust Sci 91:101010CrossRef
19.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRef
20.
Zurück zum Zitat Hodges JL, Lattimer BY (2019) Wildland fire spread modeling using convolutional neural networks. Fire Technol 55:2115–2142CrossRef Hodges JL, Lattimer BY (2019) Wildland fire spread modeling using convolutional neural networks. Fire Technol 55:2115–2142CrossRef
21.
Zurück zum Zitat Radke D, Hessler A, Ellsworth D (2019) Proceedings of the twenty-eighth international joint conference on artificial intelligence (IJCAI-19). International Joint Conferences on Artificial Intelligence Organization, pp 4575–4581 Radke D, Hessler A, Ellsworth D (2019) Proceedings of the twenty-eighth international joint conference on artificial intelligence (IJCAI-19). International Joint Conferences on Artificial Intelligence Organization, pp 4575–4581
22.
Zurück zum Zitat Burge J, Bonanni M, Ihme M, Hu L (2020) Convolutional LSTM neural networks for modeling wildland fire dynamics. arXiv Preprint. arXiv:2012.06679 Burge J, Bonanni M, Ihme M, Hu L (2020) Convolutional LSTM neural networks for modeling wildland fire dynamics. arXiv Preprint. arXiv:​2012.​06679
23.
Zurück zum Zitat Bolt A, Huston C, Kuhnert P, Dabrowski JJ, Hilton J, Sanderson C (2022) A spatio-temporal neural network forecasting approach for emulation of firefront models. arXiv Preprint. arXiv:2206.08523 Bolt A, Huston C, Kuhnert P, Dabrowski JJ, Hilton J, Sanderson C (2022) A spatio-temporal neural network forecasting approach for emulation of firefront models. arXiv Preprint. arXiv:​2206.​08523
24.
Zurück zum Zitat Kulkarni TD, Whitney WF, Kohli P, Tenenbaum J (2015) In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Montreal Kulkarni TD, Whitney WF, Kohli P, Tenenbaum J (2015) In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Montreal
25.
Zurück zum Zitat Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec, Battaglia P (2020) In: Daumé III H, Singh A (eds) Proceedings of the 37th international conference on machine learning, vol 119. Proceedings of Machine Learning Research, pp 8459–8468 Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec, Battaglia P (2020) In: Daumé III H, Singh A (eds) Proceedings of the 37th international conference on machine learning, vol 119. Proceedings of Machine Learning Research, pp 8459–8468
26.
Zurück zum Zitat Kochkov D, Smith JA, Alieva A, Wang Q, Brenner MP, Hoyer S (2021) Machine learning accelerated computational fluid dynamics. Proc Natl Acad Sci USA 118:e2101784118MathSciNetCrossRef Kochkov D, Smith JA, Alieva A, Wang Q, Brenner MP, Hoyer S (2021) Machine learning accelerated computational fluid dynamics. Proc Natl Acad Sci USA 118:e2101784118MathSciNetCrossRef
27.
Zurück zum Zitat Rollins MG, Rollins MG (2009) LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildl Fire 18:235–249CrossRef Rollins MG, Rollins MG (2009) LANDFIRE: A nationally consistent vegetation, wildland fire, and fuel assessment. Int J Wildl Fire 18:235–249CrossRef
28.
Zurück zum Zitat Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. General Technical Report RMRS-GTR-153. USDA Forest Service Rocky Mountain Research Station, Fort Collins Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. General Technical Report RMRS-GTR-153. USDA Forest Service Rocky Mountain Research Station, Fort Collins
29.
Zurück zum Zitat Forthofer JM, Butler BW, Wagenbrenner NS, Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildl Fire 23:969–981CrossRef Forthofer JM, Butler BW, Wagenbrenner NS, Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildl Fire 23:969–981CrossRef
30.
Zurück zum Zitat Foster D (2019) Generative deep learning. O’Reilly, Sebastopol Foster D (2019) Generative deep learning. O’Reilly, Sebastopol
32.
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jozefowicz YR, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. TensorFlow: large-scale machine learning on heterogeneous systems 2015. https://iwww.tensorflow.org. Accessed Aug 4, 2023. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jozefowicz YR, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. TensorFlow: large-scale machine learning on heterogeneous systems 2015. https://​iwww.​tensorflow.​org. Accessed Aug 4, 2023.
34.
Zurück zum Zitat Kingma DP, Ba J (2014) Proceedings of the international conference for learning representations. arXiv Preprint. arXiv:1412.6980 Kingma DP, Ba J (2014) Proceedings of the international conference for learning representations. arXiv Preprint. arXiv:​1412.​6980
35.
Zurück zum Zitat Filippi J-B, Mallet V, Nader B (2014) Representation and evaluation of wildfire propagation simulations. Int J Wildl Fire 23:46CrossRef Filippi J-B, Mallet V, Nader B (2014) Representation and evaluation of wildfire propagation simulations. Int J Wildl Fire 23:46CrossRef
36.
Zurück zum Zitat Tibshirani RJ, Efron B (1993) An introduction to the bootstrap. Monographs on statistics and applied probability, vol 57. Chapman and Hall, New York Tibshirani RJ, Efron B (1993) An introduction to the bootstrap. Monographs on statistics and applied probability, vol 57. Chapman and Hall, New York
37.
Zurück zum Zitat Shi X, Chen Z, Wang H, Yeung D-Y, Wong W, Woo W (2015) In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Montreal Shi X, Chen Z, Wang H, Yeung D-Y, Wong W, Woo W (2015) In: Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates, Montreal
Metadaten
Titel
Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved Wildfire Spread Behavior
verfasst von
John Burge
Matthew R. Bonanni
R. Lily Hu
Matthias Ihme
Publikationsdatum
07.08.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01469-6

Weitere Artikel der Ausgabe 6/2023

Fire Technology 6/2023 Zur Ausgabe