Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 2/2024

01.04.2024 | State of the Art/Practice Paper

Thermal Modeling of Geosynthetics and Earth Structures in a Changing Climate: Overview and Future Challenges

verfasst von: Ahmed Ibrahim, Mohamed A. Meguid, Kien Dang, Thamer Yacoub

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent decades, the thermal analysis of soil and earth structures has gained significant importance, driven primarily by the implications of climate change. This review offers a comprehensive overview of the various approaches used in the thermal analysis of soil. The article delves into the challenges associated with thermal analysis, particularly the complexities introduced by coupling techniques, and interaction between soil and geosynthetics. Additionally, it investigates the direct effects of temperature variations on different types of geosynthetics and their functionality. With the growing demand for climate-resilient infrastructure, this review aims to serve as a guide for researchers and engineers in selecting appropriate analysis methods while acknowledging inherent limitations. Emphasis is placed on numerical modeling, highlighting its advantages in handling complex conditions, while also recognizing the challenges related to computational costs and the need for specialized skills. Through an in-depth exploration of the available tools and methodologies, this paper aims to assist engineers and researchers in developing more sustainable and resilient infrastructures in the face of a changing climate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
16.
Zurück zum Zitat Fengzhuang T, Liang G, Liang G, Xiaopei C, Xiaopei C, Yanglong Z et al (2019) Experimental and theoretical determination of the frost-heave cracking law and the crack propagation criterion of slab track with water in the crack. Appl Sci. https://doi.org/10.3390/app9214592CrossRef Fengzhuang T, Liang G, Liang G, Xiaopei C, Xiaopei C, Yanglong Z et al (2019) Experimental and theoretical determination of the frost-heave cracking law and the crack propagation criterion of slab track with water in the crack. Appl Sci. https://​doi.​org/​10.​3390/​app9214592CrossRef
39.
Zurück zum Zitat Akhtar S, Li B (2020) Constitutive modeling uniaxial compressive behaviors of an artificial frozen sandy clay at different temperatures. GeoVirtual 2020 Akhtar S, Li B (2020) Constitutive modeling uniaxial compressive behaviors of an artificial frozen sandy clay at different temperatures. GeoVirtual 2020
61.
Zurück zum Zitat Barry-Macaulay D, Bouazza A, Wang B, Singh R (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52(11):1892–1900 Barry-Macaulay D, Bouazza A, Wang B, Singh R (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52(11):1892–1900
62.
Zurück zum Zitat Chenari MJ, Payan M, Ghasemi-Fare O (2023) Nonisothermal failure envelopes of strip shallow foundations resting on partially saturated clay subjected to combined inclined and eccentric loadings. Int J Geomech 23(1):04022255 Chenari MJ, Payan M, Ghasemi-Fare O (2023) Nonisothermal failure envelopes of strip shallow foundations resting on partially saturated clay subjected to combined inclined and eccentric loadings. Int J Geomech 23(1):04022255
63.
Zurück zum Zitat Hakro MR, Kumar A, Ali M, Habib AF, de Azevedo AR, Fediuk R et al (2022) Numerical analysis of shallow foundations with varying loading and soil conditions. Buildings 12(5):693 Hakro MR, Kumar A, Ali M, Habib AF, de Azevedo AR, Fediuk R et al (2022) Numerical analysis of shallow foundations with varying loading and soil conditions. Buildings 12(5):693
64.
Zurück zum Zitat Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10:179–195 Murphy KD, McCartney JS, Henry KS (2015) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10:179–195
65.
Zurück zum Zitat Abdelaziz SLAM (2013) Deep energy foundations: geotechnical challenges and design considerations. Virginia Polytechnic Institute and State University Abdelaziz SLAM (2013) Deep energy foundations: geotechnical challenges and design considerations. Virginia Polytechnic Institute and State University
66.
Zurück zum Zitat Huerta LEA, Krarti M (2015) Foundation heat transfer analysis for buildings with thermal piles. Energy Convers Manag 89:449–457 Huerta LEA, Krarti M (2015) Foundation heat transfer analysis for buildings with thermal piles. Energy Convers Manag 89:449–457
67.
Zurück zum Zitat Anders G, Radhakrishna H (1988) Power cable thermal analysis with consideration of heat and moisture transfer in the soil. IEEE Trans Power Deliv 3(4):1280–1288 Anders G, Radhakrishna H (1988) Power cable thermal analysis with consideration of heat and moisture transfer in the soil. IEEE Trans Power Deliv 3(4):1280–1288
68.
Zurück zum Zitat Yavuzturk C, Spitler JD, Rees SJ (1999) A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans 105(2):465–474 Yavuzturk C, Spitler JD, Rees SJ (1999) A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans 105(2):465–474
69.
Zurück zum Zitat Luo Y, Guo H, Meggers F, Zhang L (2019) Deep coaxial borehole heat exchanger: analytical modeling and thermal analysis. Energy 185:1298–1313 Luo Y, Guo H, Meggers F, Zhang L (2019) Deep coaxial borehole heat exchanger: analytical modeling and thermal analysis. Energy 185:1298–1313
71.
Zurück zum Zitat Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10:197–207 Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10:197–207
72.
Zurück zum Zitat Nunn JA (1994) Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Res 6(2–3):115–130 Nunn JA (1994) Free thermal convection beneath intracratonic basins: thermal and subsidence effects. Basin Res 6(2–3):115–130
73.
Zurück zum Zitat Luo J, Tuo J, Huang W, Zhu Y, Jiao Y, Xiang W et al (2018) Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers. Appl Therm Eng 128:508–516 Luo J, Tuo J, Huang W, Zhu Y, Jiao Y, Xiang W et al (2018) Influence of groundwater levels on effective thermal conductivity of the ground and heat transfer rate of borehole heat exchangers. Appl Therm Eng 128:508–516
74.
Zurück zum Zitat Simms RB, Haslam SR, Craig JR (2014) Impact of soil heterogeneity on the functioning of horizontal ground heat exchangers. Geothermics 50:35–43 Simms RB, Haslam SR, Craig JR (2014) Impact of soil heterogeneity on the functioning of horizontal ground heat exchangers. Geothermics 50:35–43
75.
Zurück zum Zitat Log T, Gustafsson S (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19(1):43–49 Log T, Gustafsson S (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19(1):43–49
76.
Zurück zum Zitat Yang I, Kim D, Lee S (2018) Construction and preliminary testing of a guarded hot plate apparatus for thermal conductivity measurements at high temperatures. Int J Heat Mass Transf 122:1343–1352 Yang I, Kim D, Lee S (2018) Construction and preliminary testing of a guarded hot plate apparatus for thermal conductivity measurements at high temperatures. Int J Heat Mass Transf 122:1343–1352
77.
Zurück zum Zitat Johansen O (1977) Thermal conductivity of soils. Norwegian Institute of Technology Johansen O (1977) Thermal conductivity of soils. Norwegian Institute of Technology
78.
Zurück zum Zitat Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458 Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458
79.
Zurück zum Zitat Côté J, Konrad J-M (2005) Thermal conductivity of base-course materials. Can Geotech J 42(1):61–78 Côté J, Konrad J-M (2005) Thermal conductivity of base-course materials. Can Geotech J 42(1):61–78
80.
Zurück zum Zitat Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4(6):549–558 Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4(6):549–558
81.
Zurück zum Zitat Dangayach S, Singh D, Kumar P, Dewri S, Roy B, Tandi C et al (2015) Thermal instability of gas hydrate bearing sediments: some issues. Mar Pet Geol 67:653–662 Dangayach S, Singh D, Kumar P, Dewri S, Roy B, Tandi C et al (2015) Thermal instability of gas hydrate bearing sediments: some issues. Mar Pet Geol 67:653–662
82.
Zurück zum Zitat Gangadhara Rao M, Singh D (1999) A generalized relationship to estimate thermal resistivity of soils. Can Geotech J 36(4):767–773 Gangadhara Rao M, Singh D (1999) A generalized relationship to estimate thermal resistivity of soils. Can Geotech J 36(4):767–773
83.
Zurück zum Zitat Krishnaiah S, Singh D (2003) A methodology to determine soil moisture movement due to thermal gradients. Exp Thermal Fluid Sci 27(6):715–721 Krishnaiah S, Singh D (2003) A methodology to determine soil moisture movement due to thermal gradients. Exp Thermal Fluid Sci 27(6):715–721
84.
Zurück zum Zitat Krishnaiah S, Singh D (2006) Determination of thermal properties of soils in a geotechnical centrifuge. J Test Eval 34(4):319–326 Krishnaiah S, Singh D (2006) Determination of thermal properties of soils in a geotechnical centrifuge. J Test Eval 34(4):319–326
85.
Zurück zum Zitat Naidu AD, Singh DN (2004) Field probe for measuring thermal resistivity of soils. J Geotech Geoenviron 130(2):213–216 Naidu AD, Singh DN (2004) Field probe for measuring thermal resistivity of soils. J Geotech Geoenviron 130(2):213–216
86.
Zurück zum Zitat Rao BH, Singh D (2010) Application of thermal flux for establishing soil–water characteristic curve of kaolin. Geomech Geoeng 5(4):259–266 Rao BH, Singh D (2010) Application of thermal flux for establishing soil–water characteristic curve of kaolin. Geomech Geoeng 5(4):259–266
87.
Zurück zum Zitat Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Therm Fluid Sci 22(3–4):133–143 Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Therm Fluid Sci 22(3–4):133–143
88.
Zurück zum Zitat Erzin Y, Rao BH, Patel A, Gumaste S, Singh D (2010) Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. Int J Therm Sci 49(1):118–130 Erzin Y, Rao BH, Patel A, Gumaste S, Singh D (2010) Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity. Int J Therm Sci 49(1):118–130
89.
Zurück zum Zitat Erzin Y, Rao BH, Singh D (2008) Artificial neural network models for predicting soil thermal resistivity. Int J Therm Sci 47(10):1347–1358 Erzin Y, Rao BH, Singh D (2008) Artificial neural network models for predicting soil thermal resistivity. Int J Therm Sci 47(10):1347–1358
90.
Zurück zum Zitat Dai Y, Wei N, Yuan H, Zhang S, Shangguan W, Liu S et al (2019) Evaluation of soil thermal conductivity schemes for use in land surface modeling. J Adv Model Earth Syst 11(11):3454–3473 Dai Y, Wei N, Yuan H, Zhang S, Shangguan W, Liu S et al (2019) Evaluation of soil thermal conductivity schemes for use in land surface modeling. J Adv Model Earth Syst 11(11):3454–3473
91.
Zurück zum Zitat Fan Z, Neff JC, Harden JW, Zhang T, Veldhuis H, Czimczik CI et al (2011) Water and heat transport in boreal soils: implications for soil response to climate change. Sci Total Environ 409(10):1836–1842 Fan Z, Neff JC, Harden JW, Zhang T, Veldhuis H, Czimczik CI et al (2011) Water and heat transport in boreal soils: implications for soil response to climate change. Sci Total Environ 409(10):1836–1842
92.
Zurück zum Zitat Overduin PP, Kane DL, van Loon WK (2006) Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Reg Sci Technol 45(1):8–22 Overduin PP, Kane DL, van Loon WK (2006) Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Reg Sci Technol 45(1):8–22
93.
Zurück zum Zitat Siqueira M, Katul G, Porporato A (2009) Soil moisture feedbacks on convection triggers: the role of soil–plant hydrodynamics. J Hydrometeorol 10(1):96–112 Siqueira M, Katul G, Porporato A (2009) Soil moisture feedbacks on convection triggers: the role of soil–plant hydrodynamics. J Hydrometeorol 10(1):96–112
94.
Zurück zum Zitat Ghasemi-Fare O, Basu P (2018) Influences of ground saturation and thermal boundary condition on energy harvesting using geothermal piles. Energy Build 165:340–351 Ghasemi-Fare O, Basu P (2018) Influences of ground saturation and thermal boundary condition on energy harvesting using geothermal piles. Energy Build 165:340–351
95.
Zurück zum Zitat Makasis N, Narsilio GA, Bidarmaghz A, Johnston IW, Zhong Y (2020) The importance of boundary conditions on the modelling of energy retaining walls. Comput Geotech 120:103399 Makasis N, Narsilio GA, Bidarmaghz A, Johnston IW, Zhong Y (2020) The importance of boundary conditions on the modelling of energy retaining walls. Comput Geotech 120:103399
96.
Zurück zum Zitat Nagano K, Mochida T, Ochifuji K (2002) Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage. Appl Therm Eng 22(12):1299–1311 Nagano K, Mochida T, Ochifuji K (2002) Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage. Appl Therm Eng 22(12):1299–1311
97.
Zurück zum Zitat Levintal E, Dragila MI, Kamai T, Weisbrod N (2017) Free and forced gas convection in highly permeable, dry porous media. Agric For Meteorol 232:469–478 Levintal E, Dragila MI, Kamai T, Weisbrod N (2017) Free and forced gas convection in highly permeable, dry porous media. Agric For Meteorol 232:469–478
98.
Zurück zum Zitat Shin H (2017) Numerical discussion on natural convection in soils. J Korean Geotech Soc 33(2):35–47 Shin H (2017) Numerical discussion on natural convection in soils. J Korean Geotech Soc 33(2):35–47
99.
Zurück zum Zitat Pastore N, Cherubini C, Rapti D, Giasi CI (2018) Experimental study of forced convection heat transport in porous media. Nonlinear Process Geophys 25(2):279–290 Pastore N, Cherubini C, Rapti D, Giasi CI (2018) Experimental study of forced convection heat transport in porous media. Nonlinear Process Geophys 25(2):279–290
100.
Zurück zum Zitat Lai Y, Pei W, Zhang M, Zhou J (2014) Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil. Int J Heat Mass Transf 78:805–819 Lai Y, Pei W, Zhang M, Zhou J (2014) Study on theory model of hydro-thermal–mechanical interaction process in saturated freezing silty soil. Int J Heat Mass Transf 78:805–819
101.
Zurück zum Zitat Chen J, Gao X, Zheng X, Miao C, Zhang Y, Du Q et al (2019) Simulation of soil freezing and thawing for different groundwater table depths. Vadose Zone J 18(1):1–14 Chen J, Gao X, Zheng X, Miao C, Zhang Y, Du Q et al (2019) Simulation of soil freezing and thawing for different groundwater table depths. Vadose Zone J 18(1):1–14
102.
Zurück zum Zitat Zhong W, Min W, Cao X, Zhang N, Leng Z, Yuan Y et al (2022) Heat transfer performance of a device integrating thermosyphon with form-stable phase change materials. J Energy Storage 54:105315 Zhong W, Min W, Cao X, Zhang N, Leng Z, Yuan Y et al (2022) Heat transfer performance of a device integrating thermosyphon with form-stable phase change materials. J Energy Storage 54:105315
103.
Zurück zum Zitat Yin X, Wu X, Zhou S, Zhu X, Wang N (2023) Numerical simulation of the evaporator in two–phase thermosyphon loop for passive containment cooling system. Ann Nucl Energy 180:109506 Yin X, Wu X, Zhou S, Zhu X, Wang N (2023) Numerical simulation of the evaporator in two–phase thermosyphon loop for passive containment cooling system. Ann Nucl Energy 180:109506
104.
Zurück zum Zitat Stannard DI (1993) Comparison of Penman–Monteith, Shuttleworth–Wallace, and modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour Res 29(5):1379–1392 Stannard DI (1993) Comparison of Penman–Monteith, Shuttleworth–Wallace, and modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resour Res 29(5):1379–1392
105.
Zurück zum Zitat Hailemariam H, Wuttke F (2022) An experimental study on the effect of temperature on the shear strength behavior of a silty clay soil. Geotechnics 2(1):250–261 Hailemariam H, Wuttke F (2022) An experimental study on the effect of temperature on the shear strength behavior of a silty clay soil. Geotechnics 2(1):250–261
106.
Zurück zum Zitat Pham TA, Sutman M (2023) Modeling the combined effect of initial density and temperature on the soil–water characteristic curve of unsaturated soils. Acta Geotech 18(12):6427–6455 Pham TA, Sutman M (2023) Modeling the combined effect of initial density and temperature on the soil–water characteristic curve of unsaturated soils. Acta Geotech 18(12):6427–6455
107.
Zurück zum Zitat Mu S, Ladanyi B (1987) Modelling of coupled heat, moisture and stress field in freezing soil. Cold Reg Sci Technol 14(3):237–246 Mu S, Ladanyi B (1987) Modelling of coupled heat, moisture and stress field in freezing soil. Cold Reg Sci Technol 14(3):237–246
108.
Zurück zum Zitat Zhang J, Lai Y, Li J, Zhao Y (2020) Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics. Int J Heat Mass Transf 146:118868 Zhang J, Lai Y, Li J, Zhao Y (2020) Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics. Int J Heat Mass Transf 146:118868
109.
Zurück zum Zitat Zhang M, Pei W, Li S, Lu J, Jin L (2017) Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region. Appl Therm Eng 127:1478–1487 Zhang M, Pei W, Li S, Lu J, Jin L (2017) Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region. Appl Therm Eng 127:1478–1487
110.
Zurück zum Zitat Cui L, Fall M (2015) A coupled thermo–hydro-mechanical–chemical model for underground cemented tailings backfill. Tunn Undergr Sp Tech 50:396–414 Cui L, Fall M (2015) A coupled thermo–hydro-mechanical–chemical model for underground cemented tailings backfill. Tunn Undergr Sp Tech 50:396–414
111.
Zurück zum Zitat Li B, Norouzi E, Zhu H-H, Wu B (2024) A thermo-poromechanical model for simulating freeze–thaw actions in unsaturated soils. Adv Water Resour 184:104624 Li B, Norouzi E, Zhu H-H, Wu B (2024) A thermo-poromechanical model for simulating freeze–thaw actions in unsaturated soils. Adv Water Resour 184:104624
112.
Zurück zum Zitat Olivella S, Gens A, Carrera J, Alonso E (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13(7):87–112 Olivella S, Gens A, Carrera J, Alonso E (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13(7):87–112
113.
Zurück zum Zitat Muñoz J, Alonso E, Lloret A (2009) Thermo-hydraulic characterisation of soft rock by means of heating pulse tests. Géotechnique 59(4):293–306 Muñoz J, Alonso E, Lloret A (2009) Thermo-hydraulic characterisation of soft rock by means of heating pulse tests. Géotechnique 59(4):293–306
114.
Zurück zum Zitat Olivella S, Carrera J, Gens A, Alonso E (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Med 15:271–293 Olivella S, Carrera J, Gens A, Alonso E (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Med 15:271–293
115.
Zurück zum Zitat Pinyol N, Alvarado M, Alonso E, Zabala F (2018) Thermal effects in landslide mobility. Géotechnique 68(6):528–545 Pinyol N, Alvarado M, Alonso E, Zabala F (2018) Thermal effects in landslide mobility. Géotechnique 68(6):528–545
116.
Zurück zum Zitat Pinyol NM, Alonso EE (2010) Criteria for rapid sliding II.: Thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114(3–4):211–227 Pinyol NM, Alonso EE (2010) Criteria for rapid sliding II.: Thermo-hydro-mechanical and scale effects in Vaiont case. Eng Geol 114(3–4):211–227
117.
Zurück zum Zitat Volckaert G, Bernier F, Alonso E, Gens A, Samper J, Villar M et al (1996) Thermal-hydraulic-mechanical and geochemical behaviour of the clay barrier in radioactive waste repositories (model development and validation). EUR, Luxembourg Volckaert G, Bernier F, Alonso E, Gens A, Samper J, Villar M et al (1996) Thermal-hydraulic-mechanical and geochemical behaviour of the clay barrier in radioactive waste repositories (model development and validation). EUR, Luxembourg
118.
Zurück zum Zitat Dayarathne R, Hawlader B, Phillips R, Robert D (2022) Factors affecting frost heave of chilled gas pipelines. J Cold Reg Eng 36(4):04022010 Dayarathne R, Hawlader B, Phillips R, Robert D (2022) Factors affecting frost heave of chilled gas pipelines. J Cold Reg Eng 36(4):04022010
119.
Zurück zum Zitat Tiedje E (2015) Characterization and numerical modeling of frost heave. McMaster University Tiedje E (2015) Characterization and numerical modeling of frost heave. McMaster University
120.
Zurück zum Zitat Konrad J-M, Morgenstern N (1984) Frost heave prediction of chilled pipelines buried in unfrozen soils. Can Geotech J 21(1):100–115 Konrad J-M, Morgenstern N (1984) Frost heave prediction of chilled pipelines buried in unfrozen soils. Can Geotech J 21(1):100–115
121.
Zurück zum Zitat Konrad J-M (1983) Frost susceptibility of soils in terms of their segregation potential. In: 4th Int Conf on Permafrost. pp 660–665 Konrad J-M (1983) Frost susceptibility of soils in terms of their segregation potential. In: 4th Int Conf on Permafrost. pp 660–665
122.
Zurück zum Zitat Peng Z, Doroodchi E, Moghtaderi B (2020) Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes: theory and model development. Prog Energy Combust Sci 79:100847 Peng Z, Doroodchi E, Moghtaderi B (2020) Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes: theory and model development. Prog Energy Combust Sci 79:100847
123.
Zurück zum Zitat Romio LC, Zimmer T, Bremm T, Buligon L, Herdies DL, Roberti DR (2022) Influence of different methods to estimate the soil thermal properties from experimental dataset. Land 11(11):1960 Romio LC, Zimmer T, Bremm T, Buligon L, Herdies DL, Roberti DR (2022) Influence of different methods to estimate the soil thermal properties from experimental dataset. Land 11(11):1960
124.
Zurück zum Zitat Bai B, Wang Y, Rao D, Bai F (2022) The effective thermal conductivity of unsaturated porous media deduced by pore-scale SPH simulation. Front Earth Sci 10:943853 Bai B, Wang Y, Rao D, Bai F (2022) The effective thermal conductivity of unsaturated porous media deduced by pore-scale SPH simulation. Front Earth Sci 10:943853
125.
Zurück zum Zitat Chen Z, Jin X, Wang M (2018) A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. J Mech Phys Solids 116:54–69MathSciNet Chen Z, Jin X, Wang M (2018) A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. J Mech Phys Solids 116:54–69MathSciNet
126.
Zurück zum Zitat Qiu K, Wu F, Yang S, Luo K, Luo KK, Fan J (2016) Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: a LES–DEM approach. Int J Therm Sci 100:357–371 Qiu K, Wu F, Yang S, Luo K, Luo KK, Fan J (2016) Heat transfer and erosion mechanisms of an immersed tube in a bubbling fluidized bed: a LES–DEM approach. Int J Therm Sci 100:357–371
127.
Zurück zum Zitat Ibrahim A, Meguid MA (2023) CFD-DEM simulation of sand erosion into defective gravity pipes under constant groundwater table. Tunn Undergr Sp Tech 131:104823 Ibrahim A, Meguid MA (2023) CFD-DEM simulation of sand erosion into defective gravity pipes under constant groundwater table. Tunn Undergr Sp Tech 131:104823
128.
Zurück zum Zitat Peters B (2013) The extended discrete element method (XDEM) for multi-physics applications. Sch J Eng Res 2:1–20 Peters B (2013) The extended discrete element method (XDEM) for multi-physics applications. Sch J Eng Res 2:1–20
129.
Zurück zum Zitat El Shamy U, De Leon O, Wells R (2013) Discrete element method study on effect of shear-induced anisotropy on thermal conductivity of granular soils. Int J Geomech 13(1):57–64 El Shamy U, De Leon O, Wells R (2013) Discrete element method study on effect of shear-induced anisotropy on thermal conductivity of granular soils. Int J Geomech 13(1):57–64
130.
Zurück zum Zitat Chunyu Z, Zhu Z, Li B, Li T (2023) Numerical simulation research on impact mechanical properties of frozen soil based on discrete element method. Int J Damage Mech 32(3):442–461 Chunyu Z, Zhu Z, Li B, Li T (2023) Numerical simulation research on impact mechanical properties of frozen soil based on discrete element method. Int J Damage Mech 32(3):442–461
131.
Zurück zum Zitat Desbrousses R, Meguid M, Bhat S (2022) Effect of temperature on the mechanical properties of two polymeric geogrid materials. Geosynth Int 29(3):326–336 Desbrousses R, Meguid M, Bhat S (2022) Effect of temperature on the mechanical properties of two polymeric geogrid materials. Geosynth Int 29(3):326–336
133.
Zurück zum Zitat Chao Z, Wang H, Hu H, Ding T, Zhang Y (2023) Predicting the temperature-dependent long-term creep mechanical response of silica sand-textured geomembrane interfaces based on physical tests and machine learning techniques. Materials 16(18):6144 Chao Z, Wang H, Hu H, Ding T, Zhang Y (2023) Predicting the temperature-dependent long-term creep mechanical response of silica sand-textured geomembrane interfaces based on physical tests and machine learning techniques. Materials 16(18):6144
134.
Zurück zum Zitat Gao J, Zhang H, Xie X, Zhang Y (2022) Study on the mechanical properties and microstructure of geogrid under different materials and temperatures. Fiber Polym 23(6):1753–1762 Gao J, Zhang H, Xie X, Zhang Y (2022) Study on the mechanical properties and microstructure of geogrid under different materials and temperatures. Fiber Polym 23(6):1753–1762
135.
Zurück zum Zitat Yeo S-S, Hsuan Y (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext Geomembr 28(5):409–421 Yeo S-S, Hsuan Y (2010) Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotext Geomembr 28(5):409–421
136.
Zurück zum Zitat Richaud E, Farcas F, Divet L, Benneton JP (2008) Accelerated ageing of polypropylene geotextiles, the effect of temperature, oxygen pressure and aqueous media on fibers: methodological aspects. Geotext Geomembranes 26(1):71–81 Richaud E, Farcas F, Divet L, Benneton JP (2008) Accelerated ageing of polypropylene geotextiles, the effect of temperature, oxygen pressure and aqueous media on fibers: methodological aspects. Geotext Geomembranes 26(1):71–81
137.
Zurück zum Zitat Marques AR, de Oliveira Patrício PS, dos Santos FS, Monteiro ML, de Carvalho UD, de Souza RC (2014) Effects of the climatic conditions of the southeastern Brazil on degradation the fibers of coir-geotextile: evaluation of mechanical and structural properties. Geotext Geomembr 42(1):76–82 Marques AR, de Oliveira Patrício PS, dos Santos FS, Monteiro ML, de Carvalho UD, de Souza RC (2014) Effects of the climatic conditions of the southeastern Brazil on degradation the fibers of coir-geotextile: evaluation of mechanical and structural properties. Geotext Geomembr 42(1):76–82
138.
Zurück zum Zitat Cui F, Xiao C, Han J, Gao S, Tian W (2022) Performance of laboratory geogrid-reinforced retaining walls under freeze-thaw cycles. Geosynth Int 29(1):81–98 Cui F, Xiao C, Han J, Gao S, Tian W (2022) Performance of laboratory geogrid-reinforced retaining walls under freeze-thaw cycles. Geosynth Int 29(1):81–98
139.
Zurück zum Zitat Wang EL, Zhang B, Chang JD (2012) Freeze-thaw cycle under the conditions of creep tests of plastics geogrid. Appl Mech Mater 170:317–321 Wang EL, Zhang B, Chang JD (2012) Freeze-thaw cycle under the conditions of creep tests of plastics geogrid. Appl Mech Mater 170:317–321
140.
Zurück zum Zitat Mukherjee S, Babu GS (2023) Three-dimensional numerical modeling of geogrid reinforced foundations. Comput Geotech 158:105397 Mukherjee S, Babu GS (2023) Three-dimensional numerical modeling of geogrid reinforced foundations. Comput Geotech 158:105397
141.
Zurück zum Zitat Gao G, Meguid M (2018) Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis. Geotext Geomembranes 46(6):685–698 Gao G, Meguid M (2018) Effect of particle shape on the response of geogrid-reinforced systems: insights from 3D discrete element analysis. Geotext Geomembranes 46(6):685–698
142.
Zurück zum Zitat Tutumluer E, Huang H, Bian X (2012) Geogrid-aggregate interlock mechanism investigated through aggregate imaging-based discrete element modeling approach. Int J Geomech 12(4):391–398 Tutumluer E, Huang H, Bian X (2012) Geogrid-aggregate interlock mechanism investigated through aggregate imaging-based discrete element modeling approach. Int J Geomech 12(4):391–398
143.
Zurück zum Zitat Shokr M, Meguid MA, Bhat S (2022) Experimental investigation of the tensile response of stiff fiberglass geogrid under varying temperatures. Int J Geosynth Groun 8(1):16 Shokr M, Meguid MA, Bhat S (2022) Experimental investigation of the tensile response of stiff fiberglass geogrid under varying temperatures. Int J Geosynth Groun 8(1):16
148.
Zurück zum Zitat De La Fuente M, Vaunat J, Marín-Moreno H (2019) Thermo-hydro-mechanical coupled modeling of methane hydrate-bearing sediments: formulation and application. Energies 12(11):2178 De La Fuente M, Vaunat J, Marín-Moreno H (2019) Thermo-hydro-mechanical coupled modeling of methane hydrate-bearing sediments: formulation and application. Energies 12(11):2178
149.
Zurück zum Zitat Grunwald N, Lehmann C, Maßmann J, Naumov D, Kolditz O, Nagel T (2022) Non-isothermal two-phase flow in deformable porous media: systematic open-source implementation and verification procedure. Geomech Geophys Geo-Energy Geo-Resour 8(3):107 Grunwald N, Lehmann C, Maßmann J, Naumov D, Kolditz O, Nagel T (2022) Non-isothermal two-phase flow in deformable porous media: systematic open-source implementation and verification procedure. Geomech Geophys Geo-Energy Geo-Resour 8(3):107
150.
Zurück zum Zitat Green CP, Wilkins A, Ennis-King J, LaForce T (2021) Geomechanical response due to nonisothermal fluid injection into a reservoir. Adv Water Resour 153:103942 Green CP, Wilkins A, Ennis-King J, LaForce T (2021) Geomechanical response due to nonisothermal fluid injection into a reservoir. Adv Water Resour 153:103942
Metadaten
Titel
Thermal Modeling of Geosynthetics and Earth Structures in a Changing Climate: Overview and Future Challenges
verfasst von
Ahmed Ibrahim
Mohamed A. Meguid
Kien Dang
Thamer Yacoub
Publikationsdatum
01.04.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 2/2024
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-024-00536-4

Weitere Artikel der Ausgabe 2/2024

International Journal of Geosynthetics and Ground Engineering 2/2024 Zur Ausgabe