Skip to main content

2024 | OriginalPaper | Buchkapitel

Underwater Acoustic Noise Modeling Based on Generative-Adversarial-Network

verfasst von : Junfeng Wang, Mingzhang Zhou, Yue Cui, Haixin Sun, Guangjie Han

Erschienen in: Applications of Generative AI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces underwater acoustic noise modeling based on generative-adversarial-network (GAN). In underwater acoustic communications, accurately fitting the impulsive noise is crucial. Traditional models with fixed parameters can only approximate the global heavy-tail distribution of the impulsive noise, failing to capture local distributions of varying lengths. To address this limitation, a GAN-based underwater noise simulator (GANUNS) has been presented. The GANUNS consists of a deep-neural-network-based generator and a convolutional-neural-network-based discriminator that learn the heavy-tail distribution of the impulsive noise. By utilizing real noise data collected in Xiamen, the simulated underwater acoustic noise generated by the GANUNS exhibits significantly lower Kullback–Leibler divergence, Jensen-Shannon divergence, and mean square error compared to traditional approximate models. This demonstrates the effectiveness of the suggested GANUNS in accurately modeling the impulsive noise for underwater acoustic communications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, Q., Dai, H., Cheang, C. F., & Wang, H. (2017). Link connectivity and coverage of underwater cognitive acoustic networks under spectrum constraint. Sensors, 17(12), 2839.CrossRef Wang, Q., Dai, H., Cheang, C. F., & Wang, H. (2017). Link connectivity and coverage of underwater cognitive acoustic networks under spectrum constraint. Sensors, 17(12), 2839.CrossRef
2.
Zurück zum Zitat Moreno-Roldán, J. M., Poncela, J., Otero, P., et al. (2020). A no-reference video quality assessment model for underwater networks. IEEE Journal of Oceanic Engineering, 45(1), 342–346.CrossRef Moreno-Roldán, J. M., Poncela, J., Otero, P., et al. (2020). A no-reference video quality assessment model for underwater networks. IEEE Journal of Oceanic Engineering, 45(1), 342–346.CrossRef
3.
Zurück zum Zitat Chen, Z., Wang, J., & Zheng, Y. R. (2017). Frequency-domain turbo equalization with iterative channel estimation for MIMO underwater acoustic communications. IEEE Journal of Oceanic Engineering, 42(3), 711–721.CrossRef Chen, Z., Wang, J., & Zheng, Y. R. (2017). Frequency-domain turbo equalization with iterative channel estimation for MIMO underwater acoustic communications. IEEE Journal of Oceanic Engineering, 42(3), 711–721.CrossRef
4.
Zurück zum Zitat Wang, J., Cui, Y., Li, J., et al. (2020). On orthogonal coding-based modulation. IEEE Communications Letters, 24(4), 816–820.CrossRef Wang, J., Cui, Y., Li, J., et al. (2020). On orthogonal coding-based modulation. IEEE Communications Letters, 24(4), 816–820.CrossRef
5.
Zurück zum Zitat Tao, J. (2018). DFT-precoded MIMO OFDM underwater acoustic communications. IEEE Journal of Oceanic Engineering, 43(3), 805–819.CrossRef Tao, J. (2018). DFT-precoded MIMO OFDM underwater acoustic communications. IEEE Journal of Oceanic Engineering, 43(3), 805–819.CrossRef
6.
Zurück zum Zitat Bocus, M. J., Doufexi, A., & Agrafiotis, D. (2020). Performance of OFDM-based massive MIMO OTFS systems for underwater acoustic communication. IET Communications, 14(4), 588–593.CrossRef Bocus, M. J., Doufexi, A., & Agrafiotis, D. (2020). Performance of OFDM-based massive MIMO OTFS systems for underwater acoustic communication. IET Communications, 14(4), 588–593.CrossRef
7.
Zurück zum Zitat Emokpae, L. E., Freeman, S. E., Edelmann, G. F., et al. (2019). Highly directional multipath free high data-rate communications with a reconfifigurable modem. IEEE Journal of Oceanic Engineering, 44(1), 229–239.CrossRef Emokpae, L. E., Freeman, S. E., Edelmann, G. F., et al. (2019). Highly directional multipath free high data-rate communications with a reconfifigurable modem. IEEE Journal of Oceanic Engineering, 44(1), 229–239.CrossRef
8.
Zurück zum Zitat Wen, M., Cheng, X., Yang, L., et al. (2016). Index modulated OFDM for underwater acoustic communications. IEEE Communications Magazine, 54(5), 132–137.CrossRef Wen, M., Cheng, X., Yang, L., et al. (2016). Index modulated OFDM for underwater acoustic communications. IEEE Communications Magazine, 54(5), 132–137.CrossRef
9.
Zurück zum Zitat Zhou, S., & Wang, Z. (2014). OFDM for underwater acoustic communications. Wiley. Zhou, S., & Wang, Z. (2014). OFDM for underwater acoustic communications. Wiley.
10.
Zurück zum Zitat Kuai, X., Sun, H., Zhou, S., et al. (2016). Impulsive noise mitigation in underwater acoustic OFDM systems. IEEE Transactions on Vehicular Technology, 65(10), 8190–8202.CrossRef Kuai, X., Sun, H., Zhou, S., et al. (2016). Impulsive noise mitigation in underwater acoustic OFDM systems. IEEE Transactions on Vehicular Technology, 65(10), 8190–8202.CrossRef
11.
Zurück zum Zitat Wang, J., Li, J., Yan, S., et al. (2021). A novel underwater acoustic signal denoising algorithm for GAUSSIAN/non-GAUSSIAN impulsive noise. IEEE Transactions on Vehicular Technology, 70(1), 429–445.CrossRef Wang, J., Li, J., Yan, S., et al. (2021). A novel underwater acoustic signal denoising algorithm for GAUSSIAN/non-GAUSSIAN impulsive noise. IEEE Transactions on Vehicular Technology, 70(1), 429–445.CrossRef
12.
Zurück zum Zitat Liu, S., Xiao, L., Huang, L., et al. (2019). Impulsive noise recovery and elimination: A sparse machine learning based approach. IEEE Transactions on Vehicular Technology, 68(3), 2306–2315.CrossRef Liu, S., Xiao, L., Huang, L., et al. (2019). Impulsive noise recovery and elimination: A sparse machine learning based approach. IEEE Transactions on Vehicular Technology, 68(3), 2306–2315.CrossRef
13.
Zurück zum Zitat Banerjee, S., & Agrawal, M. (2014). On the performance of underwater communication system in noise with Gaussian mixture statistics. In Paper presented at the 20th National Conference on Communications (NCC). Kanpur, India. Banerjee, S., & Agrawal, M. (2014). On the performance of underwater communication system in noise with Gaussian mixture statistics. In Paper presented at the 20th National Conference on Communications (NCC). Kanpur, India.
14.
Zurück zum Zitat Banerjee, S., & Agrawal, M. (2013). Underwater acoustic noise with generalized gaussian statistics: Effects on error performance. IN Paper presented at 2013 MTS/IEEE OCEANS, Bergen, Norway. Banerjee, S., & Agrawal, M. (2013). Underwater acoustic noise with generalized gaussian statistics: Effects on error performance. IN Paper presented at 2013 MTS/IEEE OCEANS, Bergen, Norway.
15.
Zurück zum Zitat Lin, B., Wang, X., Yuan, W., et al. (2020). A novel OFDM autoencoder featuring CNN-based channel estimation for internet of vessels. IEEE Internet of Things Journal, 7(8), 7601–7611.CrossRef Lin, B., Wang, X., Yuan, W., et al. (2020). A novel OFDM autoencoder featuring CNN-based channel estimation for internet of vessels. IEEE Internet of Things Journal, 7(8), 7601–7611.CrossRef
16.
Zurück zum Zitat Zhang, X., Ying, W., & Yang, B. (2018). Parameter estimation for class a modeled ocean ambient noise. Journal of Engineering and Technological Sciences, 50(3), 330–345.CrossRef Zhang, X., Ying, W., & Yang, B. (2018). Parameter estimation for class a modeled ocean ambient noise. Journal of Engineering and Technological Sciences, 50(3), 330–345.CrossRef
17.
Zurück zum Zitat Panaro, J. S. G., Lopes, F. R. B., & Barreira, L. M., et al. (2012). Underwater acoustic noise model for shallow water communications. In Paper presented in Brazilian telecommunication symposium. Brasilia, Brazil. Panaro, J. S. G., Lopes, F. R. B., & Barreira, L. M., et al. (2012). Underwater acoustic noise model for shallow water communications. In Paper presented in Brazilian telecommunication symposium. Brasilia, Brazil.
18.
Zurück zum Zitat Agrawal, A., Kumar, R., & Agrawal, M. (2019). Modeling of underwater noise. Paper presented in OCEANS 2019. Marseille, France. Agrawal, A., Kumar, R., & Agrawal, M. (2019). Modeling of underwater noise. Paper presented in OCEANS 2019. Marseille, France.
19.
Zurück zum Zitat Pascual, S., Park, M., & Serrà, J. et al. (2018). Language and noise transfer in speech enhancement generative adversarial network. In Paper presented in 2018 IEEE inter-national conference on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada. Pascual, S., Park, M., & Serrà, J. et al. (2018). Language and noise transfer in speech enhancement generative adversarial network. In Paper presented in 2018 IEEE inter-national conference on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada.
20.
Zurück zum Zitat Ji, X., Wang, J., Li, Y., et al. (2020). Data-limited modulation classification with a CVAE-enhanced learning model. IEEE Communications Letters, 24(10), 2191–2195.CrossRef Ji, X., Wang, J., Li, Y., et al. (2020). Data-limited modulation classification with a CVAE-enhanced learning model. IEEE Communications Letters, 24(10), 2191–2195.CrossRef
21.
Zurück zum Zitat Yao, X., Yang, H., & Li, Y. (2019). Modulation identification of underwater acoustic communications signals based on generative adversarial networks. In Paper presented in OCEANS 2019. Marseille, France. Yao, X., Yang, H., & Li, Y. (2019). Modulation identification of underwater acoustic communications signals based on generative adversarial networks. In Paper presented in OCEANS 2019. Marseille, France.
22.
Zurück zum Zitat Tolba, B., Elsabrouty, M., Abdu-Aguye, M. G., et al. (2020). Massive MIMO CSI feedback based on generative adversarial network”. IEEE Communications Letters, 24(12), 2805–2808.CrossRef Tolba, B., Elsabrouty, M., Abdu-Aguye, M. G., et al. (2020). Massive MIMO CSI feedback based on generative adversarial network”. IEEE Communications Letters, 24(12), 2805–2808.CrossRef
23.
Zurück zum Zitat Dong, Y., Wang, H., & Yao, Y. D. (2020). Channel estimation for one-bit multiuser massive MIMO using conditional GAN. IEEE Communications Letters, 25(3), 854–858.CrossRef Dong, Y., Wang, H., & Yao, Y. D. (2020). Channel estimation for one-bit multiuser massive MIMO using conditional GAN. IEEE Communications Letters, 25(3), 854–858.CrossRef
24.
Zurück zum Zitat Yang, Y., Li, Y., Zhang, W., et al. (2019). Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities. IEEE Communications Magazine, 57(3), 22–27.CrossRef Yang, Y., Li, Y., Zhang, W., et al. (2019). Generative-adversarial-network-based wireless channel modeling: Challenges and opportunities. IEEE Communications Magazine, 57(3), 22–27.CrossRef
25.
Zurück zum Zitat Ye, H., Li, G. Y., & Juang, B. H. F., et al. (2018). Channel agnostic end-to-end learning-based communication systems with conditional GAN. In Paper presented in 2018 IEEE Globecom Workshops (GC Wkshps). Abu Dhabi, United Arab Emirates. Ye, H., Li, G. Y., & Juang, B. H. F., et al. (2018). Channel agnostic end-to-end learning-based communication systems with conditional GAN. In Paper presented in 2018 IEEE Globecom Workshops (GC Wkshps). Abu Dhabi, United Arab Emirates.
26.
Zurück zum Zitat Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Publications of the American Statistical Association, 46(253), 68–78.CrossRef Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Publications of the American Statistical Association, 46(253), 68–78.CrossRef
27.
Zurück zum Zitat Gopal, S. S. (2002). Finite mixture models. Advanced algorithmic approaches to medical image segmentation: State-of-the-art applications in cardiology, neurology, mammography and pathology, pp 341–361 Gopal, S. S. (2002). Finite mixture models. Advanced algorithmic approaches to medical image segmentation: State-of-the-art applications in cardiology, neurology, mammography and pathology, pp 341–361
28.
Zurück zum Zitat Weron, A., Weron, R. (1995). Computer simulation of Le´vy α-stable variables and processes. In Paper presented in Chaos—The Interplay between stochastic and deterministic behaviour: Proceedings of the XXXIst winter school of theoretical physics held. Karpacz, Poland. Weron, A., Weron, R. (1995). Computer simulation of Le´vy α-stable variables and processes. In Paper presented in Chaos—The Interplay between stochastic and deterministic behaviour: Proceedings of the XXXIst winter school of theoretical physics held. Karpacz, Poland.
29.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2020). Generative adversarial nets. Communications of the ACM, 63(11), 139–144.CrossRef Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2020). Generative adversarial nets. Communications of the ACM, 63(11), 139–144.CrossRef
30.
Zurück zum Zitat Lee-Leon, A., Yuen, C., & Herremans, D. (2021). Underwater acoustic communication receiver using deep belief network. IEEE Transactions on Communications, 69(6), 3698–3708.CrossRef Lee-Leon, A., Yuen, C., & Herremans, D. (2021). Underwater acoustic communication receiver using deep belief network. IEEE Transactions on Communications, 69(6), 3698–3708.CrossRef
Metadaten
Titel
Underwater Acoustic Noise Modeling Based on Generative-Adversarial-Network
verfasst von
Junfeng Wang
Mingzhang Zhou
Yue Cui
Haixin Sun
Guangjie Han
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-46238-2_17

Premium Partner