Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Polyelectrolyte Nanofibers

verfasst von : Alexander L. Yarin, Filippo Pierini, Eyal Zussman, Marco Lauricella

Erschienen in: Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is devoted to polyelectrolytes (PEs), which possess macromolecules with a substantial part comprised of ionic or ionizable functional groups. Solutions of PEs reveal non-trivial physical phenomena when such functional groups are ionized under dissociation of counterions. Accordingly, electrostatic interactions between PE charges and dissociated counterions in solution, or in complex with another PE suspended in the same electrolyte reveal unexpected and attractive properties. As a result, conformations and dynamics of such PEs in solution are significantly affected by electrostatic interactions with the other PEs of the same or an opposite polarity. Especially interesting for applications are macromolecular polyelectrolyte complexes (PECs) resulting from the association of oppositely charged PEs. Polyelectrolytes can be electrospun to form nanofibers and nanofiber membranes. Electrospinning of polyelectrolytes is described here in detail, including the unusual physical properties of the resulting nanofibers and their internal structure. The deformable polyelectrolyte fibrous membranes can sustain an electro-osmotic throughflow and serve as a key element of artificial dynamically-tunable responsive malleable surfaces of the type of those considered in Sect. 1.​3.​6 in Chap. 1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barrat, J. L., Joanny, J. F. (1996). Theory of polyelectrolyte solutions. In Prigogine, I., Rice, S. A. (Eds.), Advances in Polymer Physics, Polymer Systems (vol. XCIV; pp 1–67). John Wiley & Sons Inc. Barrat, J. L., Joanny, J. F. (1996). Theory of polyelectrolyte solutions. In Prigogine, I., Rice, S. A. (Eds.), Advances in Polymer Physics, Polymer Systems (vol. XCIV; pp 1–67). John Wiley & Sons Inc.
Zurück zum Zitat Bhattacharjee, P. K., Schneider, T. M., Brenner, M. P., McKinley, G. H., & Rutledge, G. C. (2010). On the measured current in electrospinning. Journal of Applied Physics, 107, 044306.CrossRef Bhattacharjee, P. K., Schneider, T. M., Brenner, M. P., McKinley, G. H., & Rutledge, G. C. (2010). On the measured current in electrospinning. Journal of Applied Physics, 107, 044306.CrossRef
Zurück zum Zitat Boas, M., Gradys, A., Vasilyev, G., Burman, M., & Zussman, E. (2015). Electrospinning polyelectrolyte complexes: PH-responsive fibers. Soft Matter, 11, 1739–1747.CrossRef Boas, M., Gradys, A., Vasilyev, G., Burman, M., & Zussman, E. (2015). Electrospinning polyelectrolyte complexes: PH-responsive fibers. Soft Matter, 11, 1739–1747.CrossRef
Zurück zum Zitat Bordi, F., Sarti, S. (2015) Dielectric properties of polyelectrolytes and lipid vesicles. In Dielectric Relaxation in Biological Systems. Oxford University Press, pp 307–339. Bordi, F., Sarti, S. (2015) Dielectric properties of polyelectrolytes and lipid vesicles. In Dielectric Relaxation in Biological Systems. Oxford University Press, pp 307–339.
Zurück zum Zitat Bromberg, L. (1998). Properties of aqueous solutions and gels of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(acrylic acid). Journal of Physical Chemistry B, 102, 10736–10744.CrossRef Bromberg, L. (1998). Properties of aqueous solutions and gels of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(acrylic acid). Journal of Physical Chemistry B, 102, 10736–10744.CrossRef
Zurück zum Zitat Bromberg, L., Temchenko, M., & Hatton, T. A. (2003). Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic). Langmuir, 19, 8675–8684. Bromberg, L., Temchenko, M., & Hatton, T. A. (2003). Smart microgel studies. Polyelectrolyte and drug-absorbing properties of microgels from polyether-modified poly(acrylic). Langmuir, 19, 8675–8684.
Zurück zum Zitat Bronich, T. K., Kabanov, A. V., Kabanov, V. A., Yu, K., & Eisenberg, A. (1997). Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules, 30, 3519–3525.CrossRef Bronich, T. K., Kabanov, A. V., Kabanov, V. A., Yu, K., & Eisenberg, A. (1997). Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules, 30, 3519–3525.CrossRef
Zurück zum Zitat Camposeo, A., Greenfeld, I., Tantussi, F., Pagliara, S., Moffa, M., Fuso, F., Allegrini, M., Zussman, E., & Pisignano, D. (2013). Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Letters, 13, 5056–5062.CrossRef Camposeo, A., Greenfeld, I., Tantussi, F., Pagliara, S., Moffa, M., Fuso, F., Allegrini, M., Zussman, E., & Pisignano, D. (2013). Local mechanical properties of electrospun fibers correlate to their internal nanostructure. Nano Letters, 13, 5056–5062.CrossRef
Zurück zum Zitat Chia, K.-K., Rubner, M. F., & Cohen, R. E. (2009). PH-responsive reversibly swellable nanotube arrays. Langmuir, 25, 14044–14052.CrossRef Chia, K.-K., Rubner, M. F., & Cohen, R. E. (2009). PH-responsive reversibly swellable nanotube arrays. Langmuir, 25, 14044–14052.CrossRef
Zurück zum Zitat Choi, J., & Rubner, M. F. (2005). Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules, 38, 116–124.CrossRef Choi, J., & Rubner, M. F. (2005). Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules, 38, 116–124.CrossRef
Zurück zum Zitat Chollakup, R., Smitthipong, W., Eisenbach, C. D., & Tirrell, M. (2010). Phase behavior and coacervation of aqueous poly(acrylic acid)−poly(allylamine) solutions. Macromolecules, 43, 2518–2528.CrossRef Chollakup, R., Smitthipong, W., Eisenbach, C. D., & Tirrell, M. (2010). Phase behavior and coacervation of aqueous poly(acrylic acid)−poly(allylamine) solutions. Macromolecules, 43, 2518–2528.CrossRef
Zurück zum Zitat Chunder, A., Sarkar, S., Yu, Y. B., & Zhai, L. (2007). Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Colloids and Surfaces B-Biointerfaces, 58, 172–179.CrossRef Chunder, A., Sarkar, S., Yu, Y. B., & Zhai, L. (2007). Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Colloids and Surfaces B-Biointerfaces, 58, 172–179.CrossRef
Zurück zum Zitat Colby, R. H. (2010). Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions. Rheologica Acta, 49, 425–442.CrossRef Colby, R. H. (2010). Structure and linear viscoelasticity of flexible polymer solutions: Comparison of polyelectrolyte and neutral polymer solutions. Rheologica Acta, 49, 425–442.CrossRef
Zurück zum Zitat Connal, L. A., Li, Q., Quinn, J. F., Tjipto, E., Caruso, F., & Qiao, G. G. (2008). PH-responsive poly(acrylic acid) core cross-linked star polymers: Morphology transitions in solution and multilayer thin films. Macromolecules, 41, 2620–2626.CrossRef Connal, L. A., Li, Q., Quinn, J. F., Tjipto, E., Caruso, F., & Qiao, G. G. (2008). PH-responsive poly(acrylic acid) core cross-linked star polymers: Morphology transitions in solution and multilayer thin films. Macromolecules, 41, 2620–2626.CrossRef
Zurück zum Zitat Cranford, S. W., & Buehler, M. J. (2012). Variation of weak polyelectrolyte persistence length through an electrostatic contour length. Macromolecules, 45, 8067–8082.CrossRef Cranford, S. W., & Buehler, M. J. (2012). Variation of weak polyelectrolyte persistence length through an electrostatic contour length. Macromolecules, 45, 8067–8082.CrossRef
Zurück zum Zitat Cranford, S. W., Ortiz, C., & Buehler, M. J. (2010). Mechanomutable properties of a PAA/PAH polyelectrolyte complex: Rate dependence and ionization effects on tunable adhesion strength. Soft Matter, 6, 4175–4188.CrossRef Cranford, S. W., Ortiz, C., & Buehler, M. J. (2010). Mechanomutable properties of a PAA/PAH polyelectrolyte complex: Rate dependence and ionization effects on tunable adhesion strength. Soft Matter, 6, 4175–4188.CrossRef
Zurück zum Zitat De la Mora, J. F., & Loscertales, I. G. (1994). The current emitted by highly conducting Taylor cones. Journal of Fluid Mechanics, 260, 155–184.CrossRef De la Mora, J. F., & Loscertales, I. G. (1994). The current emitted by highly conducting Taylor cones. Journal of Fluid Mechanics, 260, 155–184.CrossRef
Zurück zum Zitat Degennes, P. G., Pincus, P., Velasco, R. M., & Brochard, F. (1976). Remarks on polyelectrolyte conformation. Journal De Physique, 37, 1461–1473.CrossRef Degennes, P. G., Pincus, P., Velasco, R. M., & Brochard, F. (1976). Remarks on polyelectrolyte conformation. Journal De Physique, 37, 1461–1473.CrossRef
Zurück zum Zitat Dobrynin, A. V., & Rubinstein, M. (2005). Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 30, 1049–1118.CrossRef Dobrynin, A. V., & Rubinstein, M. (2005). Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 30, 1049–1118.CrossRef
Zurück zum Zitat Fang, M. M., Kim, C. H., & Mallouk, T. E. (1999). Dielectric properties of the lamellar niobates and titanoniobates AM(2)Nb(3)O(10) and ATiNbO(5) (A = H, K, M = Ca, Pb), and their condensation products Ca4Nb6O19 and Ti2Nb2O9. Chemistry of Materials, 11, 1519–1525.CrossRef Fang, M. M., Kim, C. H., & Mallouk, T. E. (1999). Dielectric properties of the lamellar niobates and titanoniobates AM(2)Nb(3)O(10) and ATiNbO(5) (A = H, K, M = Ca, Pb), and their condensation products Ca4Nb6O19 and Ti2Nb2O9. Chemistry of Materials, 11, 1519–1525.CrossRef
Zurück zum Zitat Fernández de la Mora, J. (2007). The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 39, 217–243. Fernández de la Mora, J. (2007). The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 39, 217–243.
Zurück zum Zitat Gañán-Calvo, A. M. (1997). On the theory of electrohydrodynamically driven capillary jets. Journal of Fluid Mechanics, 335, 165–188.MathSciNetCrossRef Gañán-Calvo, A. M. (1997). On the theory of electrohydrodynamically driven capillary jets. Journal of Fluid Mechanics, 335, 165–188.MathSciNetCrossRef
Zurück zum Zitat Gañán-Calvo, A. M. (1999). The surface charge in electrospraying: Its nature and its universal scaling laws. Journal of Aerosol Science, 30, 863–872.CrossRef Gañán-Calvo, A. M. (1999). The surface charge in electrospraying: Its nature and its universal scaling laws. Journal of Aerosol Science, 30, 863–872.CrossRef
Zurück zum Zitat Greenfeld, I., Arinstein, A., Fezzaa, K., Rafailovich, M. H., & Zussman, E. (2011). Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations. Physical Review E, 84, 041806.CrossRef Greenfeld, I., Arinstein, A., Fezzaa, K., Rafailovich, M. H., & Zussman, E. (2011). Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations. Physical Review E, 84, 041806.CrossRef
Zurück zum Zitat Gucht, J. V. D., Spruijt, E., Lemmers, M., & Cohen Stuart, M. A. (2011). Polyelectrolyte complexes: Bulk phases and colloidal systems. Journal of Colloid and Interface Science, 361, 407–422. Gucht, J. V. D., Spruijt, E., Lemmers, M., & Cohen Stuart, M. A. (2011). Polyelectrolyte complexes: Bulk phases and colloidal systems. Journal of Colloid and Interface Science, 361, 407–422.
Zurück zum Zitat Hara, M. (1993) Polyelectrolytes: Science and technology. Marcel Dekker. Hara, M. (1993) Polyelectrolytes: Science and technology. Marcel Dekker.
Zurück zum Zitat Hayashi, Y., Ullner, M., & Linse, P. (2003). Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content. Journal of Physical Chemistry B, 107, 8198–8207.CrossRef Hayashi, Y., Ullner, M., & Linse, P. (2003). Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content. Journal of Physical Chemistry B, 107, 8198–8207.CrossRef
Zurück zum Zitat Hess, M., Jones, R. G., Kahovec, J., Kitayama, T., Kratochvíl, P., Kubisa, P., Mormann, W., Stepto, R. F. T., Tabak, D., Vohlídal, J., & Wilks, E. S. (2006). Terminology of polymers containing ionizable or ionic groups and of polymers containing ions. Pure and Applied Chemistry, 78, 2067–2074.CrossRef Hess, M., Jones, R. G., Kahovec, J., Kitayama, T., Kratochvíl, P., Kubisa, P., Mormann, W., Stepto, R. F. T., Tabak, D., Vohlídal, J., & Wilks, E. S. (2006). Terminology of polymers containing ionizable or ionic groups and of polymers containing ions. Pure and Applied Chemistry, 78, 2067–2074.CrossRef
Zurück zum Zitat Higuera, F. J. (2006). Stationary viscosity-dominated electrified capillary jets. Journal of Fluid Mechanics, 558, 143–152.CrossRef Higuera, F. J. (2006). Stationary viscosity-dominated electrified capillary jets. Journal of Fluid Mechanics, 558, 143–152.CrossRef
Zurück zum Zitat Hiller, J. A., Mendelsohn, J. D., & Rubner, M. F. (2002). Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature Materials, 1, 59–63.CrossRef Hiller, J. A., Mendelsohn, J. D., & Rubner, M. F. (2002). Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature Materials, 1, 59–63.CrossRef
Zurück zum Zitat Hoagland, D. A., Arvanitidou, E., & Welch, C. (1999). Capillary electrophoresis measurements of the free solution mobility for several model polyelectrolyte systems. Macromolecules, 32, 6180–6190.CrossRef Hoagland, D. A., Arvanitidou, E., & Welch, C. (1999). Capillary electrophoresis measurements of the free solution mobility for several model polyelectrolyte systems. Macromolecules, 32, 6180–6190.CrossRef
Zurück zum Zitat Huang, W. M., Lu, H. B., Zhao, Y., Ding, Z., Wang, C. C., Zhang, J. L., Sun, L., Fu, J., & Gao, X. Y. (2014). Instability/collapse of polymeric materials and their structures in stimulus-induced shape/surface morphology switching. Materials and Design, 59, 176–192.CrossRef Huang, W. M., Lu, H. B., Zhao, Y., Ding, Z., Wang, C. C., Zhang, J. L., Sun, L., Fu, J., & Gao, X. Y. (2014). Instability/collapse of polymeric materials and their structures in stimulus-induced shape/surface morphology switching. Materials and Design, 59, 176–192.CrossRef
Zurück zum Zitat Kim, B., Park, H., Lee, S. H., & Sigmund, W. M. (2005). Poly(acrylic acid) nanofibers by electrospinning. Materials Letters, 59, 829–832.CrossRef Kim, B., Park, H., Lee, S. H., & Sigmund, W. M. (2005). Poly(acrylic acid) nanofibers by electrospinning. Materials Letters, 59, 829–832.CrossRef
Zurück zum Zitat Klossner, R. R., Queen, H. A., Coughlin, A. J., & Krause, W. E. (2008). Correlation of chitosan’s rheological properties and its ability to electrospun. Biomacromolecules, 9, 2947–2953.CrossRef Klossner, R. R., Queen, H. A., Coughlin, A. J., & Krause, W. E. (2008). Correlation of chitosan’s rheological properties and its ability to electrospun. Biomacromolecules, 9, 2947–2953.CrossRef
Zurück zum Zitat Lazutin, A. A., Semenov, A. N., & Vasilevskaya, V. V. (2012). Polyelectrolyte complexes consisting of macromolecules with varied stiffness: Computer simulation. Macromolecular Theory and Simulations, 21, 328–339.CrossRef Lazutin, A. A., Semenov, A. N., & Vasilevskaya, V. V. (2012). Polyelectrolyte complexes consisting of macromolecules with varied stiffness: Computer simulation. Macromolecular Theory and Simulations, 21, 328–339.CrossRef
Zurück zum Zitat Liu, Y., Winter, H. H., & Perry, S. L. (2017). Linear viscoelasticity of complex coacervates. Advances in Colloid and Interface Science, 239, 46–60.CrossRef Liu, Y., Winter, H. H., & Perry, S. L. (2017). Linear viscoelasticity of complex coacervates. Advances in Colloid and Interface Science, 239, 46–60.CrossRef
Zurück zum Zitat Martin, G. P. (2022). Study of polyelectrolyte complex network formation and spinnability. PhD Thesis, The Technion-Israel Institute of Technology. Martin, G. P. (2022). Study of polyelectrolyte complex network formation and spinnability. PhD Thesis, The Technion-Israel Institute of Technology.
Zurück zum Zitat McKee, M. G., Wilkes, G. L., Colby, R. H., & Long, T. E. (2004). Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 37, 1760–1767.CrossRef McKee, M. G., Wilkes, G. L., Colby, R. H., & Long, T. E. (2004). Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules, 37, 1760–1767.CrossRef
Zurück zum Zitat McKee, M. G., Hunley, M. T., Layman, J. M., Long, T. E. (2006). Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules (Washington, DC, U. S.), 39, 575–583. McKee, M. G., Hunley, M. T., Layman, J. M., Long, T. E. (2006). Solution rheological behavior and electrospinning of cationic polyelectrolytes. Macromolecules (Washington, DC, U. S.), 39, 575–583.
Zurück zum Zitat Melcher, J. R., & Taylor, G. I. (1969). Electrohydrodynamics—A Review of role of interfacial shear stresses. Annual Review of Fluid Mechanics, 1, 111–146.CrossRef Melcher, J. R., & Taylor, G. I. (1969). Electrohydrodynamics—A Review of role of interfacial shear stresses. Annual Review of Fluid Mechanics, 1, 111–146.CrossRef
Zurück zum Zitat Meng, X. X., Perry, S. L., & Schiffman, J. D. (2017). Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Letters, 6, 505–511.CrossRef Meng, X. X., Perry, S. L., & Schiffman, J. D. (2017). Complex coacervation: Chemically stable fibers electrospun from aqueous polyelectrolyte solutions. ACS Macro Letters, 6, 505–511.CrossRef
Zurück zum Zitat Moschakis, T., & Biliaderis, C. G. (2017). Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid and Interface Science, 28, 96–109.CrossRef Moschakis, T., & Biliaderis, C. G. (2017). Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid and Interface Science, 28, 96–109.CrossRef
Zurück zum Zitat Muthukumar, M. (1997). Dynamics of polyelectrolyte solutions. Journal of Chemical Physics, 107, 2619–2635.CrossRef Muthukumar, M. (1997). Dynamics of polyelectrolyte solutions. Journal of Chemical Physics, 107, 2619–2635.CrossRef
Zurück zum Zitat Muthukumar, M. (2017). 50th anniversary perspective: A perspective on polyelectrolyte solutions. Macromolecules, 50, 9528–9560.CrossRef Muthukumar, M. (2017). 50th anniversary perspective: A perspective on polyelectrolyte solutions. Macromolecules, 50, 9528–9560.CrossRef
Zurück zum Zitat Overbeek, J. T. G.; Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. Journal of Cellular and Comparative Physiology 49, 7–26. Overbeek, J. T. G.; Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. Journal of Cellular and Comparative Physiology 49, 7–26.
Zurück zum Zitat Penchev, H., Paneva, D., Manolova, N., & Rashkov, I. (2008). Novel electrospun nanofibers composed of polyelectrolyte complexes. Macromolecular Rapid Communications, 29, 677–681.CrossRef Penchev, H., Paneva, D., Manolova, N., & Rashkov, I. (2008). Novel electrospun nanofibers composed of polyelectrolyte complexes. Macromolecular Rapid Communications, 29, 677–681.CrossRef
Zurück zum Zitat Petrov, A. I., Antipov, A. A., & Sukhorukov, G. B. (2003). Base-acid equilibria in polyelectrolyte systems: From weak polvelectrolytes to interpolyelectrolyte complexes and multilayered polyelectrolyte shells. Macromolecules, 36, 10079–10086.CrossRef Petrov, A. I., Antipov, A. A., & Sukhorukov, G. B. (2003). Base-acid equilibria in polyelectrolyte systems: From weak polvelectrolytes to interpolyelectrolyte complexes and multilayered polyelectrolyte shells. Macromolecules, 36, 10079–10086.CrossRef
Zurück zum Zitat Philippova, O. E., Hourdet, D., Audebert, R., & Khokhlov, A. R. (1997). PH-responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules, 30, 8278–8285.CrossRef Philippova, O. E., Hourdet, D., Audebert, R., & Khokhlov, A. R. (1997). PH-responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules, 30, 8278–8285.CrossRef
Zurück zum Zitat Reith, D., Meyer, H., & Müller-Plathe, F. (2001). Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties. Macromolecules, 34, 2335–2345.CrossRef Reith, D., Meyer, H., & Müller-Plathe, F. (2001). Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties. Macromolecules, 34, 2335–2345.CrossRef
Zurück zum Zitat Reznik, S. N., & Zussman, E. (2009). Capillary-dominated electrified jets of a viscous leaky dielectric liquid. Physical Review E, 81, 026313.CrossRef Reznik, S. N., & Zussman, E. (2009). Capillary-dominated electrified jets of a viscous leaky dielectric liquid. Physical Review E, 81, 026313.CrossRef
Zurück zum Zitat Rubinstein, M., Liao, Q., & Panyukov, S. (2018). Structure of liquid coacervates formed by oppositely charged polyelectrolytes. Macromolecules, 51, 9572–9588.CrossRef Rubinstein, M., Liao, Q., & Panyukov, S. (2018). Structure of liquid coacervates formed by oppositely charged polyelectrolytes. Macromolecules, 51, 9572–9588.CrossRef
Zurück zum Zitat Sæther, H. V., Holme, H. K., Maurstad, G., Smidsrød, O., & Stokke, B. T. (2008). Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers, 74, 813–821.CrossRef Sæther, H. V., Holme, H. K., Maurstad, G., Smidsrød, O., & Stokke, B. T. (2008). Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers, 74, 813–821.CrossRef
Zurück zum Zitat Saville, D. A. (1997). Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29, 27–64.MathSciNetCrossRef Saville, D. A. (1997). Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 29, 27–64.MathSciNetCrossRef
Zurück zum Zitat Schaaf, P., & Schlenoff, J. B. (2015). Saloplastics: Processing compact polyelectrolyte complexes. Advanced Materials, 27, 2420–2432.CrossRef Schaaf, P., & Schlenoff, J. B. (2015). Saloplastics: Processing compact polyelectrolyte complexes. Advanced Materials, 27, 2420–2432.CrossRef
Zurück zum Zitat Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48, 317–352.CrossRef Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48, 317–352.CrossRef
Zurück zum Zitat Sing, C. E. (2017). Development of the modern theory of polymeric complex coacervation. Advances in Colloid and Interface Science, 239, 2–16.CrossRef Sing, C. E. (2017). Development of the modern theory of polymeric complex coacervation. Advances in Colloid and Interface Science, 239, 2–16.CrossRef
Zurück zum Zitat Sing, C. E., & Perry, S. L. (2020). Recent progress in the science of complex coacervation. Soft Matter, 2020, 2885–2914. Sing, C. E., & Perry, S. L. (2020). Recent progress in the science of complex coacervation. Soft Matter, 2020, 2885–2914.
Zurück zum Zitat Skorb, E. V., & Möhwald, H. (2013). 25th anniversary article: Dynamic interfaces for responsive encapsulation systems. Advanced Materials, 25, 5029–5043.CrossRef Skorb, E. V., & Möhwald, H. (2013). 25th anniversary article: Dynamic interfaces for responsive encapsulation systems. Advanced Materials, 25, 5029–5043.CrossRef
Zurück zum Zitat Spruijt, E., Leermakers, F. A. M., Fokkink, R., Schweins, R., Van Well, A. A., Cohen Stuart, M. A., & Van Der Gucht, J. (2013). Structure and dynamics of polyelectrolyte complex coacervates studied by scattering of neutrons, X-rays, and light. Macromolecules, 46, 4596–4605.CrossRef Spruijt, E., Leermakers, F. A. M., Fokkink, R., Schweins, R., Van Well, A. A., Cohen Stuart, M. A., & Van Der Gucht, J. (2013). Structure and dynamics of polyelectrolyte complex coacervates studied by scattering of neutrons, X-rays, and light. Macromolecules, 46, 4596–4605.CrossRef
Zurück zum Zitat Subbotin, A. V. (2021). Features of the behavior of a polymer solution jet in electrospinning. Polymer Science—Series A, 63, 172–179.CrossRef Subbotin, A. V. (2021). Features of the behavior of a polymer solution jet in electrospinning. Polymer Science—Series A, 63, 172–179.CrossRef
Zurück zum Zitat Tang, C., Ozcam, A. E., Stout, B., & Khan, S. A. (2012). Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules, 13, 1269–1278.CrossRef Tang, C., Ozcam, A. E., Stout, B., & Khan, S. A. (2012). Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules, 13, 1269–1278.CrossRef
Zurück zum Zitat Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45, 2017–2030.CrossRef Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45, 2017–2030.CrossRef
Zurück zum Zitat Wang, Q., & Schlenoff, J. B. (2014). The polyelectrolyte complex/coacervate continuum. Macromolecules, 47, 3108–3116.CrossRef Wang, Q., & Schlenoff, J. B. (2014). The polyelectrolyte complex/coacervate continuum. Macromolecules, 47, 3108–3116.CrossRef
Zurück zum Zitat Xu, M., & Lewis, J. A. (2007). Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly. Langmuir, 23, 12752–12759.CrossRef Xu, M., & Lewis, J. A. (2007). Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly. Langmuir, 23, 12752–12759.CrossRef
Zurück zum Zitat Zhang, R., & Shklovskii, B. I. (2004). Phase diagram of aggregation of oppositely charged colloids in salty water. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69, 1–10. Zhang, R., & Shklovskii, B. I. (2004). Phase diagram of aggregation of oppositely charged colloids in salty water. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69, 1–10.
Metadaten
Titel
Polyelectrolyte Nanofibers
verfasst von
Alexander L. Yarin
Filippo Pierini
Eyal Zussman
Marco Lauricella
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48439-1_3