Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2023

01.12.2023 | THEORY OF METALS

Dynamic Properties and Focusing of Phonons in Metallic and Dielectric Crystals of Cubic Symmetry. Review 1

verfasst von: I. I. Kuleyev, I. G. Kuleyev

Erschienen in: Physics of Metals and Metallography | Sonderheft 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spectrum and polarization vectors of phonons in alkali and noble metals belonging to cubic crystals with positive anisotropy of elastic moduli are calculated. They are compared with the results for dielectric crystals. It is shown that the anisotropy of the spectrum in them is significantly higher than in dielectric crystals such as Ge and Si. The polarization vectors of the slow t2 mode in them have an anomalously large longitudinal component compared to Ge and Si crystals. In Na, Li, and K crystals, it reaches 70, 60, and 30%, respectively. This leads to a significantly greater effect of the slow t2 mode on electron–phonon relaxation and drag thermopower in alkali metals. Isoenergetic surfaces are calculated, and the features of phonon propagation in alkali and noble metals are analyzed. Their most interesting feature is the effect of focusing on the propagation of longitudinal phonons in alkali metals. For phonon wave vectors in the {100} planes, the directions of group velocities for all alkali metals are close to [101]. Estimates have shown that, for Na, Cs, and K crystals, more than 90, 86, and 79% of phonons, respectively, with wave vectors in the {100} plane propagate in the [101] directions. This effect can be used to obtain plane-parallel phonon beams from a point source of longitudinal vibrations, as well as for other technical applications. The effect of anisotropy of elastic energy on the density of phonon states in alkali metals is analyzed. The results for metallic and dielectric crystals of cubic symmetric are compared. The ranges of angles corresponding to phonon focusing and defocusing are determined. The phonon flux enhancement factors are calculated and compared for metallic and dielectric crystals. The dependences of the types of curvature of isoenergetic surfaces of acoustic modes in alkali and noble metals on the values of anisotropy parameters are analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955). R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955).
5.
Zurück zum Zitat A. H. Wilson, The Theory of Metals (Cambridge Univ. Press, Cambridge, 1953). A. H. Wilson, The Theory of Metals (Cambridge Univ. Press, Cambridge, 1953).
6.
Zurück zum Zitat J. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960). J. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960).
7.
Zurück zum Zitat F. J. Blatt, Physics of Electron Conductivity in Solids (McGraw-Hill, 1968). F. J. Blatt, Physics of Electron Conductivity in Solids (McGraw-Hill, 1968).
9.
Zurück zum Zitat F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965). F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).
11.
Zurück zum Zitat G. Leibfried, “Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle,” in Handbuch der Physik / Encyclopedia of Physics (Springer, Berlin, 1955), Vol. 7/1, pp. 104–324. G. Leibfried, “Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle,” in Handbuch der Physik / Encyclopedia of Physics (Springer, Berlin, 1955), Vol. 7/1, pp. 104–324.
12.
Zurück zum Zitat C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 2004). C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 2004).
13.
Zurück zum Zitat J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972). J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972).
14.
Zurück zum Zitat V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980). V. L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980).
15.
Zurück zum Zitat R. Berman, Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976). R. Berman, Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976).
16.
Zurück zum Zitat B. M. Mogilevskii and A. F. Chudnovskii, Heat Conductivity of Semiconductors (Nauka, Moscow, 1972). B. M. Mogilevskii and A. F. Chudnovskii, Heat Conductivity of Semiconductors (Nauka, Moscow, 1972).
24.
Zurück zum Zitat D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2003). https://doi.org/10.1063/1.4832615CrossRef D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2003). https://​doi.​org/​10.​1063/​1.​4832615CrossRef
33.
Zurück zum Zitat I. G. Kuleyev, I. I. Kuleyev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport: In Single-Crystal Nanostructures, Texts and Monographs in Theoretical Physics (De Gruyter, Berlin, 2020). https://doi.org/10.1515/9783110670509 I. G. Kuleyev, I. I. Kuleyev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport: In Single-Crystal Nanostructures, Texts and Monographs in Theoretical Physics (De Gruyter, Berlin, 2020). https://​doi.​org/​10.​1515/​9783110670509
66.
Zurück zum Zitat A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978; Prentice-Hall, 1981). A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978; Prentice-Hall, 1981).
70.
Zurück zum Zitat I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, “The influence of phonon focusing on density of states and the Knudsen phonon gas flow in nanowires with different types of anisotropy of elastic energy,” Phys. Status Solidi C 14, 1600263–1600273 (2017). https://doi.org/10.1002/pssc.201600263ADSCrossRef I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, “The influence of phonon focusing on density of states and the Knudsen phonon gas flow in nanowires with different types of anisotropy of elastic energy,” Phys. Status Solidi C 14, 1600263–1600273 (2017). https://​doi.​org/​10.​1002/​pssc.​201600263ADSCrossRef
73.
Zurück zum Zitat Cz. Jasiukiewicz, T. Paszkiewicz, and D. Lehmann, “Phonon focussing patterns: Calculation of response of finite area detectors to pulsed ballistic beams of dispersive and dispersionless phonons,” Z. Phys. B Condens. Matter 96, 213–222 (1994). https://doi.org/10.1007/BF01313286ADSCrossRef Cz. Jasiukiewicz, T. Paszkiewicz, and D. Lehmann, “Phonon focussing patterns: Calculation of response of finite area detectors to pulsed ballistic beams of dispersive and dispersionless phonons,” Z. Phys. B Condens. Matter 96, 213–222 (1994). https://​doi.​org/​10.​1007/​BF01313286ADSCrossRef
79.
Zurück zum Zitat A. V. Pogorelov, Differential Geometry, 6th ed. (Nauka, Moscow, 1974). A. V. Pogorelov, Differential Geometry, 6th ed. (Nauka, Moscow, 1974).
Metadaten
Titel
Dynamic Properties and Focusing of Phonons in Metallic and Dielectric Crystals of Cubic Symmetry. Review 1
verfasst von
I. I. Kuleyev
I. G. Kuleyev
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe Sonderheft 1/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23601993

Weitere Artikel der Sonderheft 1/2023

Physics of Metals and Metallography 1/2023 Zur Ausgabe

EditorialNotes

Preface