Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2023

01.12.2023 | THEORY OF METALS

Phonon Focusing and Electron Transport in Potassium Single Crystals. Review 2

verfasst von: I. G. Kuleyev, I. I. Kuleyev

Erschienen in: Physics of Metals and Metallography | Sonderheft 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of anisotropy of elastic energy on electron–phonon relaxation in potassium crystals is studied. The spectrum and polarization vectors of phonons are calculated, and the contributions of all vibrational modes to the drag thermopower and electrical resistivity of potassium crystals are analyzed. It is shown that the contribution of the t2 slow quasi-transverse mode to these effects, which was not previously taken into account, at temperatures much lower than the Debye temperature \(T \ll {{\theta }_{{\text{D}}}}\), exceeds the contribution of longitudinal phonons by an order of magnitude. However, at high temperatures (\(T \ll {{\theta }_{{\text{D}}}}\)), the contribution of longitudinal phonons to the electrical resistivity turned out to be 4 times greater than the total contribution of electron relaxation in the fast and slow quasi-transverse modes. By comparing the calculated total thermopower of potassium crystals with different dislocation densities with experimental data, the constants of the coupling of electrons with the shear components of vibrational modes is determined. For samples with different dislocation densities, the contribution of shear waves to the drag thermopower is 4–6 times greater than the contribution of longitudinal phonons. It is established that the maximum values of drag thermopower in perfect potassium crystals at low temperatures \(T \ll {{\theta }_{{\text{D}}}}\) do not depend on the electron–phonon relaxation constants, but are completely determined by the second-order elastic moduli, crystal density, and electron density. In this case, the contributions of various modes to the drag thermopower turn out to be proportional to the ratio of the heat capacities of the individual modes. It is shown that shear waves make a significant contribution to the electrical resistivity of potassium crystals at low temperatures \(T \ll {{\theta }_{{\text{D}}}}\). It is 4 times greater than the contribution to the electrical resistivity from longitudinal phonons and should be taken into account when analyzing the electrical resistivity of potassium. The distribution of phonons most efficient for electrical resistivity is determined, and the effect of the inelasticity of electron–phonon scattering on the electrical resistivity and drag thermopower of potassium crystals at low temperatures is analyzed. It is shown that its maximum is at \(\hbar \omega _{q}^{\lambda } \approx 5{{k}_{{\text{B}}}}T\) and the energy of the most efficient phonons is distributed in the interval \({{k}_{{\text{B}}}}T \leqslant \hbar \omega _{q}^{\lambda } \leqslant 12{{k}_{{\text{B}}}}T\). The effect of anisotropy of elastic energy on the electron–phonon mutual drag and the electrical resistivity of potassium crystals at low temperatures is considered. In the hydrodynamic approximation, the momentum exchange between the electron and three phonon fluxes corresponding to the three branches of the vibrational spectrum is analyzed. The actual mechanisms of phonon momentum relaxation are taken into account: scattering at sample boundaries, dislocations, and in phonon–phonon umklapp processes. It is shown that, in the limiting case of strong mutual drag, the drift velocities of phonons of all polarizations and electrons are close and determined by the total rate of phonon relaxation in resistive scattering processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
8.
Zurück zum Zitat R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955). R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955).
10.
Zurück zum Zitat A. H. Wilson, The Theory of Metals (Cambridge Univ. Press, Cambridge, 1953). A. H. Wilson, The Theory of Metals (Cambridge Univ. Press, Cambridge, 1953).
11.
Zurück zum Zitat J. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960). J. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960).
12.
Zurück zum Zitat F. J. Blatt, Physics of Electron Conductivity in Solids (McGraw-Hill, 1968). F. J. Blatt, Physics of Electron Conductivity in Solids (McGraw-Hill, 1968).
14.
Zurück zum Zitat A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978; Prentice-Hall, 1981). A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978; Prentice-Hall, 1981).
15.
Zurück zum Zitat B. M. Askerov, Electron Transport Phenomena in Semiconductors (Nauka, Moscow, 1985). B. M. Askerov, Electron Transport Phenomena in Semiconductors (Nauka, Moscow, 1985).
16.
Zurück zum Zitat P. S. Zyryanov and M. I. Klinger, Quantum Theory of Electron Transport Phenomena in Crystalline Semiconductors (Nauka, Moscow, 1976). P. S. Zyryanov and M. I. Klinger, Quantum Theory of Electron Transport Phenomena in Crystalline Semiconductors (Nauka, Moscow, 1976).
17.
Zurück zum Zitat I. M. Tsidil’kovskii, Thermomagnetic Phenomena in Semiconductors (Nauka, Moscow, 1960). I. M. Tsidil’kovskii, Thermomagnetic Phenomena in Semiconductors (Nauka, Moscow, 1960).
21.
Zurück zum Zitat L. E. Gurevich and G. M. Nedlin, “Thermoelectric coefficients in metals under strong magnetic field and effect of electron drag by phonons,” Zh. Eksp. Teor. Fiz. 37, 766–775 (1959). L. E. Gurevich and G. M. Nedlin, “Thermoelectric coefficients in metals under strong magnetic field and effect of electron drag by phonons,” Zh. Eksp. Teor. Fiz. 37, 766–775 (1959).
25.
Zurück zum Zitat L. E. Gurevich, I. Korenblit, and Ya, “The influence of electron drag by phonons and their mutual drag on kinetic coefficients of semimetals,” Fig. Tverd. Tela, No. 6, 856–863 (1964). L. E. Gurevich, I. Korenblit, and Ya, “The influence of electron drag by phonons and their mutual drag on kinetic coefficients of semimetals,” Fig. Tverd. Tela, No. 6, 856–863 (1964).
26.
Zurück zum Zitat I. G. Lang and S. T. Pavlov, “Theory of electron dragging by phonons in a magnetic field,” Sov. J. Exp. Theor. Phys. 36, 793 (1973).ADS I. G. Lang and S. T. Pavlov, “Theory of electron dragging by phonons in a magnetic field,” Sov. J. Exp. Theor. Phys. 36, 793 (1973).ADS
27.
Zurück zum Zitat L. E. Gurevich, “Thermoelectric properties of semiconductors,” Zh. Eksp. Teor. Fiz. 16, 193–272 (1946). L. E. Gurevich, “Thermoelectric properties of semiconductors,” Zh. Eksp. Teor. Fiz. 16, 193–272 (1946).
28.
Zurück zum Zitat L. E. Gurevich, “Thermomagnetic and galvanomagnetic properties of semiconductors,” Zh. Eksp. Teor. Fiz. 16, 416–422 (1946). L. E. Gurevich, “Thermomagnetic and galvanomagnetic properties of semiconductors,” Zh. Eksp. Teor. Fiz. 16, 416–422 (1946).
35.
Zurück zum Zitat I. G. Kuleev, “Effects of mutual electron and phonon drag and the electron transport in degenerate semiconductors,” Phys. Solid State 87, 469–479 (1999). I. G. Kuleev, “Effects of mutual electron and phonon drag and the electron transport in degenerate semiconductors,” Phys. Solid State 87, 469–479 (1999).
37.
Zurück zum Zitat I. G. Kuleev, “Kinetic coefficients of nonequilibrium electron-phonon systems of degenerate conductors in classical magnetic fields,” Phys. Met. Metallogr. 89, 127–138 (2000). I. G. Kuleev, “Kinetic coefficients of nonequilibrium electron-phonon systems of degenerate conductors in classical magnetic fields,” Phys. Met. Metallogr. 89, 127–138 (2000).
42.
Zurück zum Zitat I. G. Kuleev and I. I. Kuleev, “Role of electron-electron and electron-phonon normal scattering processes in the thermogalvanomagnetic effects in metals,” Phys. Met. Metallogr. 91, 1–11 (2001). I. G. Kuleev and I. I. Kuleev, “Role of electron-electron and electron-phonon normal scattering processes in the thermogalvanomagnetic effects in metals,” Phys. Met. Metallogr. 91, 1–11 (2001).
43.
Zurück zum Zitat I. G. Kuleev and I. I. Kuleev, “Thermogalvanomagnetic effects in metals under adiabatic conditions: Role of normal processes of electron-electron and phonon-phonon scattering,” Phys. Met. Metallogr. 91, 446–454 (2001). I. G. Kuleev and I. I. Kuleev, “Thermogalvanomagnetic effects in metals under adiabatic conditions: Role of normal processes of electron-electron and phonon-phonon scattering,” Phys. Met. Metallogr. 91, 446–454 (2001).
44.
Zurück zum Zitat I. G. Kuleev, I. I. Kuleev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, “Normal processes of phonon-phonon scattering and the drag thermopower in germanium crystals with isotopic disorder,” J. Exp. Theor. Phys. 96, 1078–1088 (2003). https://doi.org/10.1134/1.1591219ADSCrossRef I. G. Kuleev, I. I. Kuleev, A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, “Normal processes of phonon-phonon scattering and the drag thermopower in germanium crystals with isotopic disorder,” J. Exp. Theor. Phys. 96, 1078–1088 (2003). https://​doi.​org/​10.​1134/​1.​1591219ADSCrossRef
45.
Zurück zum Zitat I. G. Kuleev, “Electron-phonon drag, normal processes of quasiparticle scattering and kinetic effects in metals and semiconductors,” in Extended Abstract of Doctoral Dissertation in Physics and Mathematics (Institute of Physics of Metals, Ural Branch, Russ. Acad. Sci., Ekaterinburg, 2002). I. G. Kuleev, “Electron-phonon drag, normal processes of quasiparticle scattering and kinetic effects in metals and semiconductors,” in Extended Abstract of Doctoral Dissertation in Physics and Mathematics (Institute of Physics of Metals, Ural Branch, Russ. Acad. Sci., Ekaterinburg, 2002).
46.
53.
Zurück zum Zitat I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport in Single-Crystal Nanostructures (Izd-vo UMTs Ural. Politekh. Inst., Ekaterinburg, 2018). I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport in Single-Crystal Nanostructures (Izd-vo UMTs Ural. Politekh. Inst., Ekaterinburg, 2018).
54.
Zurück zum Zitat I. I. Kuleev and I. G. Kuleev, “Dynamic properties and focusing of phonons in metallic and dielectric crystals of cubic symmetry. Review 1,” Phys. Met. Metallogr. 124, Suppl. 1, S1–S30 (2023). https://doi.org/10.1134/S0031918X23601993 I. I. Kuleev and I. G. Kuleev, “Dynamic properties and focusing of phonons in metallic and dielectric crystals of cubic symmetry. Review 1,” Phys. Met. Metallogr. 124, Suppl. 1, S1–S30 (2023). https://doi.org/10.1134/S0031918X23601993
58.
Zurück zum Zitat F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965). F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).
62.
Zurück zum Zitat A. P. Zhernov and A. V. Inyushkin, Isotopic Effects in Solid Bodies (Kurchatovskii Inst., Moscow, 2001). A. P. Zhernov and A. V. Inyushkin, Isotopic Effects in Solid Bodies (Kurchatovskii Inst., Moscow, 2001).
67.
Zurück zum Zitat V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971). V. P. Silin, Introduction to the Kinetic Theory of Gases (Nauka, Moscow, 1971).
68.
Zurück zum Zitat H. M. Bikkin and I. I. Lyapilin, Nonequilibrium Thermodynamics and Physical Kinetics (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2009). H. M. Bikkin and I. I. Lyapilin, Nonequilibrium Thermodynamics and Physical Kinetics (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2009).
69.
Zurück zum Zitat G. Röpke, Statistische Mechanik für das Nichtgleichgewicht (Deutscher Verlag der Wissenschaften, Berlin, 1987). G. Röpke, Statistische Mechanik für das Nichtgleichgewicht (Deutscher Verlag der Wissenschaften, Berlin, 1987).
70.
Zurück zum Zitat E. M. Conwell, High Field Transport in Semiconductors (Academic, 1967). E. M. Conwell, High Field Transport in Semiconductors (Academic, 1967).
74.
Zurück zum Zitat R. Berman, Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976). R. Berman, Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976).
Metadaten
Titel
Phonon Focusing and Electron Transport in Potassium Single Crystals. Review 2
verfasst von
I. G. Kuleyev
I. I. Kuleyev
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe Sonderheft 1/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23602093

Weitere Artikel der Sonderheft 1/2023

Physics of Metals and Metallography 1/2023 Zur Ausgabe

EditorialNotes

Preface