Skip to main content
Erschienen in: Journal of Infrared, Millimeter, and Terahertz Waves 5-6/2024

07.05.2024 | Research

Hybrid Subterahertz Atmospheric Pressure Plasmatron for Plasma Chemical Applications

verfasst von: S. V. Sintsov, A. V. Vodopyanov, D. A. Mansfeld, A. P. Fokin, A. A. Ananichev, A. A. Goryunov, E. I. Preobrazhensky, N. V. Chekmarev, M. Yu. Glyavin

Erschienen in: Journal of Infrared, Millimeter, and Terahertz Waves | Ausgabe 5-6/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the results of an experimental study of a new hybrid plasmatron scheme, which was used to realize a gas discharge at atmospheric pressure supported by continuous focused submillimeter radiation with a frequency of 263 GHz. The implemented design allowed organizing a self-consistent interaction between submillimeter radiation and the supercritical plasma in a localized area both in terms of gas flow and electrodynamic. It is experimentally shown that the gas discharge absorbs up to 80% of the introduced submillimeter radiation power.
Literatur
1.
Zurück zum Zitat Sidorov, A. V. (2022). Terahertz gas discharge: current progress and possible applications. Journal of Physics D: Applied Physics, 55(29), 293001.CrossRef Sidorov, A. V. (2022). Terahertz gas discharge: current progress and possible applications. Journal of Physics D: Applied Physics, 55(29), 293001.CrossRef
2.
Zurück zum Zitat K.V. Artem’ev, G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, L.V. Kolik, E.M. Konchekov, I.A. Kossyi, D.V. Malakhov, A.E. Petrov, K.A. Sarksyan, et al., JETP Letters, 107, 219 (2018)CrossRef K.V. Artem’ev, G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, L.V. Kolik, E.M. Konchekov, I.A. Kossyi, D.V. Malakhov, A.E. Petrov, K.A. Sarksyan, et al., JETP Letters, 107, 219 (2018)CrossRef
3.
Zurück zum Zitat L. P. Grachev, I. I. Esakov, and K. V. Khodataev, Technical Physics, 44, 1271 (1999).CrossRef L. P. Grachev, I. I. Esakov, and K. V. Khodataev, Technical Physics, 44, 1271 (1999).CrossRef
4.
Zurück zum Zitat Fukunari, M., Tanaka, S., Shinbayashi, R., Yamaguchi, Y., Tatematsu, Y., & Saito, T. (2019). Observation of a comb-shaped filamentary plasma array under subcritical condition in 303-GHz millimetre-wave air discharge. Scientific Reports, 9(1), 17972.CrossRef Fukunari, M., Tanaka, S., Shinbayashi, R., Yamaguchi, Y., Tatematsu, Y., & Saito, T. (2019). Observation of a comb-shaped filamentary plasma array under subcritical condition in 303-GHz millimetre-wave air discharge. Scientific Reports, 9(1), 17972.CrossRef
5.
Zurück zum Zitat Cook, A., Shapiro, M., & Temkin, R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz. Applied physics letters, 97, 011504 (2010). Cook, A., Shapiro, M., & Temkin, R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz. Applied physics letters, 97, 011504 (2010).
6.
Zurück zum Zitat Tabata, K., Harada, Y., Nakamura, Y., Komurasaki, K., Koizumi, H., Kariya, T., & Minami, R. Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: Observation of plasma structure and spectroscopic measurement of gas temperature. Journal of Applied Physics, 127, 063301 (2020) Tabata, K., Harada, Y., Nakamura, Y., Komurasaki, K., Koizumi, H., Kariya, T., & Minami, R. Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: Observation of plasma structure and spectroscopic measurement of gas temperature. Journal of Applied Physics, 127, 063301 (2020)
7.
Zurück zum Zitat Nakamura, Y., Komurasaki, K., Fukunari, M., & Koizumi, H. Numerical analysis of plasma structure observed in atmospheric millimeter-wave discharge at under-critical intensity. Journal of Applied Physics, 124, 033303 (2018) Nakamura, Y., Komurasaki, K., Fukunari, M., & Koizumi, H. Numerical analysis of plasma structure observed in atmospheric millimeter-wave discharge at under-critical intensity. Journal of Applied Physics, 124, 033303 (2018)
8.
Zurück zum Zitat Gaponov A. V., Petelin M. I., Yulpatov V. K. The Indused radiation of excited classical oscillators and its use in high frequency electrons // Izv. Vyssh. Uchebn. Zaved., Radiofiz. 1967. Vol. 10. P. 1414. Gaponov A. V., Petelin M. I., Yulpatov V. K. The Indused radiation of excited classical oscillators and its use in high frequency electrons // Izv. Vyssh. Uchebn. Zaved., Radiofiz. 1967. Vol. 10. P. 1414.
9.
Zurück zum Zitat Glyavin M. Y., Denisov G. G., Zapevalov V. E., Kuftin A. N., Luchinin A. G., Manuilov V. N., Morozkin M. V., Sedov A. S., Chirkov A. V. Terahertz gyrotrons: State of the art and prospects // Journal of Communications Technology and Electronics. 2014. Vol. 59, no. 8. P. 792–797.CrossRef Glyavin M. Y., Denisov G. G., Zapevalov V. E., Kuftin A. N., Luchinin A. G., Manuilov V. N., Morozkin M. V., Sedov A. S., Chirkov A. V. Terahertz gyrotrons: State of the art and prospects // Journal of Communications Technology and Electronics. 2014. Vol. 59, no. 8. P. 792–797.CrossRef
10.
Zurück zum Zitat 10. Denisov, G. G., Glyavin, M. Y., Fokin, A. P., Kuftin, A. N., Tsvetkov, A. I., Sedov, A. S., ... Zapevalov, V.E. (2018). First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics. Review of Scientific Instruments, 89(8), 084702.CrossRef 10. Denisov, G. G., Glyavin, M. Y., Fokin, A. P., Kuftin, A. N., Tsvetkov, A. I., Sedov, A. S., ... Zapevalov, V.E. (2018). First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics. Review of Scientific Instruments, 89(8), 084702.CrossRef
11.
Zurück zum Zitat Idehara, T., Sabchevski, S. P., Glyavin, M., & Mitsudo, S. (2020). The Gyrotrons as Promising RadiationSources for THz Sensing and Imaging. Applied Sciences, 10(3), 980.CrossRef Idehara, T., Sabchevski, S. P., Glyavin, M., & Mitsudo, S. (2020). The Gyrotrons as Promising RadiationSources for THz Sensing and Imaging. Applied Sciences, 10(3), 980.CrossRef
12.
Zurück zum Zitat Mitsudo S., Glyavin M., Khutoryan E., Bandurkin I., Saito T., IshikawaY., Manuilov V., Zotova I., Fedotov A., Kuleshov A., Sabchevski S., Tatematsu Y., Zaslavsky V., Idehara T. (2019). An Experimental Investigation of a 0.8 THz Double-Beam Gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves, 40(11–12), 1114–1128. Mitsudo S., Glyavin M., Khutoryan E., Bandurkin I., Saito T., IshikawaY., Manuilov V., Zotova I., Fedotov A., Kuleshov A., Sabchevski S., Tatematsu Y., Zaslavsky V., Idehara T. (2019). An Experimental Investigation of a 0.8 THz Double-Beam Gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves, 40(11–12), 1114–1128.
13.
Zurück zum Zitat Glyavin, M. Y., Morozkin, M. V., Tsvetkov, A. I., Lubyako, L. V., Golubiatnikov, G. Y., Kuftin, A. N., ... & Denisov, G. G. (2016). Automated microwave complex on the basis of a continuous-wave gyrotron with an operating frequency of 263 GHz and an output power of 1 kW. Radiophysics and Quantum Electronics, 58, 639–648.CrossRef Glyavin, M. Y., Morozkin, M. V., Tsvetkov, A. I., Lubyako, L. V., Golubiatnikov, G. Y., Kuftin, A. N., ... & Denisov, G. G. (2016). Automated microwave complex on the basis of a continuous-wave gyrotron with an operating frequency of 263 GHz and an output power of 1 kW. Radiophysics and Quantum Electronics, 58, 639–648.CrossRef
14.
Zurück zum Zitat Glyavin, M. Y., Chirkov, A. V., Denisov, G. G., Fokin, A. P., Kholoptsev, V. V., Kuftin, A. N., Luchinin A.G., Golubyatnikov G. Yu., Malygin V. I., Morozkin M. V., Manuilov V. N., Proyavin M. D., Sedov A. S. , Sokolov E. V., Tai E. M., Tsvetkov A. I., Zapevalov, V. E. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Review of scientific instruments, 86, 054705 (2015) Glyavin, M. Y., Chirkov, A. V., Denisov, G. G., Fokin, A. P., Kholoptsev, V. V., Kuftin, A. N., Luchinin A.G., Golubyatnikov G. Yu., Malygin V. I., Morozkin M. V., Manuilov V. N., Proyavin M. D., Sedov A. S. , Sokolov E. V., Tai E. M., Tsvetkov A. I., Zapevalov, V. E. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Review of scientific instruments, 86, 054705 (2015)
15.
Zurück zum Zitat V.B. Gildenburg, J. Exp. Theor. Phys., 45, 1978 (1963). V.B. Gildenburg, J. Exp. Theor. Phys., 45, 1978 (1963).
16.
Zurück zum Zitat Gildenburg V.B., Kim A.V. Ionization-thermal instability of an rf discharge in an electromagnetic wave // Physics of Plasmas. 1980. Vol. 6, no. 4. P. 496–499. Gildenburg V.B., Kim A.V. Ionization-thermal instability of an rf discharge in an electromagnetic wave // Physics of Plasmas. 1980. Vol. 6, no. 4. P. 496–499.
17.
Zurück zum Zitat M. Moisan, H. Nowakowska, Plasma Sources Science and Technology, 27(7), 073001 (2018).CrossRef M. Moisan, H. Nowakowska, Plasma Sources Science and Technology, 27(7), 073001 (2018).CrossRef
18.
Zurück zum Zitat Gildenburg, V. B., Golubev, S. V., Gospodchikov, E. D., Sintsov, S. V., & Vodopyanov, A. V. Plasma-resonance-assisted filament in a high-pressure microwave discharge. Physics of Plasmas, 31, 023507 (2024). Gildenburg, V. B., Golubev, S. V., Gospodchikov, E. D., Sintsov, S. V., & Vodopyanov, A. V. Plasma-resonance-assisted filament in a high-pressure microwave discharge. Physics of Plasmas, 31, 023507 (2024).
19.
Zurück zum Zitat Vicharev A. L., Gildenburg V. B., Golubev S. V, Eremin B. G., Ivanov O. A., Litvak A. G., Stepanov A. N., Yunakovskii A. D. Nonlinear dynamics of a freely localized microwave discharge in an electromagnetic wave beam // Sov. Phys. JETP. 1988. Vol. 67, no. 4. P. 724–728. Vicharev A. L., Gildenburg V. B., Golubev S. V, Eremin B. G., Ivanov O. A., Litvak A. G., Stepanov A. N., Yunakovskii A. D. Nonlinear dynamics of a freely localized microwave discharge in an electromagnetic wave beam // Sov. Phys. JETP. 1988. Vol. 67, no. 4. P. 724–728.
20.
Zurück zum Zitat Litvak A. Freely localized gas discharges in microwave beams, in Applications of High Power Microwaves // Artech House, Boston. 1994. pp. 145–167. Litvak A. Freely localized gas discharges in microwave beams, in Applications of High Power Microwaves // Artech House, Boston. 1994. pp. 145–167.
21.
Zurück zum Zitat Brodskii Y.Y., Venediktov I.P., Golubev S.V., Zorin V.G., Kossyi I.A. Nonequilibrium microwave discharge in air at atmospheric pressure // Technical Physics Letters. 1984. Vol. 10, no. 2. P. 77. Brodskii Y.Y., Venediktov I.P., Golubev S.V., Zorin V.G., Kossyi I.A. Nonequilibrium microwave discharge in air at atmospheric pressure // Technical Physics Letters. 1984. Vol. 10, no. 2. P. 77.
22.
Zurück zum Zitat Gritsinin S. I., Kossyi I. A., Silakov V. P., Tarasova N. M. The decay of the plasma produced by a freely localized microwave discharge // Journal of Physics D: Applied Physics. 1996. Vol. 29, no. 4. P. 1032–1034.CrossRef Gritsinin S. I., Kossyi I. A., Silakov V. P., Tarasova N. M. The decay of the plasma produced by a freely localized microwave discharge // Journal of Physics D: Applied Physics. 1996. Vol. 29, no. 4. P. 1032–1034.CrossRef
23.
Zurück zum Zitat Sintsov S., Vodopyanov A., Mansfeld D. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron // AIP Advances. 2019. Vol. 9, no. 10. P. 1–8.CrossRef Sintsov S., Vodopyanov A., Mansfeld D. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron // AIP Advances. 2019. Vol. 9, no. 10. P. 1–8.CrossRef
24.
Zurück zum Zitat Sintsov S., Tabata K., Mansfeld D., Vodopyanov A., Komurasaki K. Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz // Journal of Physics D: Applied Physics. 2020. Vol. 53, no. 30. P. 541–550.CrossRef Sintsov S., Tabata K., Mansfeld D., Vodopyanov A., Komurasaki K. Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz // Journal of Physics D: Applied Physics. 2020. Vol. 53, no. 30. P. 541–550.CrossRef
25.
Zurück zum Zitat Sintsov S. V., Vodopyanov A. V., Viktorov M. E., Morozkin M. V., Glyavin M. Yu. Non-equilibrium Atmospheric-Pressure Plasma Torch Sustained in a Quasi-optical Beam of Subterahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves. 2020. Vol. 41, no. 6. P. 711–727.CrossRef Sintsov S. V., Vodopyanov A. V., Viktorov M. E., Morozkin M. V., Glyavin M. Yu. Non-equilibrium Atmospheric-Pressure Plasma Torch Sustained in a Quasi-optical Beam of Subterahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves. 2020. Vol. 41, no. 6. P. 711–727.CrossRef
26.
Zurück zum Zitat Mansfeld, D., Sintsov, S., Chekmarev, N., & Vodopyanov, A. (2020). Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. Journal of CO2 Utilization, 40, 101197.CrossRef Mansfeld, D., Sintsov, S., Chekmarev, N., & Vodopyanov, A. (2020). Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. Journal of CO2 Utilization, 40, 101197.CrossRef
27.
Zurück zum Zitat Zherlitsyn, A.G., Buyantuev, V.V., Kositsyn, V.S. et al. A microwave plasmatron. Instrum Exp Tech 57, 749–750 (2014).CrossRef Zherlitsyn, A.G., Buyantuev, V.V., Kositsyn, V.S. et al. A microwave plasmatron. Instrum Exp Tech 57, 749–750 (2014).CrossRef
28.
Zurück zum Zitat Motornenko, A. P., & Schünemann, K. (2001). Plasmatron with microwave excitation of nonequilibrium plasma. AEU-International Journal of Electronics and Communications, 55(5), 337–341. Motornenko, A. P., & Schünemann, K. (2001). Plasmatron with microwave excitation of nonequilibrium plasma. AEU-International Journal of Electronics and Communications, 55(5), 337–341.
29.
Zurück zum Zitat Lebedev, Y. A. (2015). Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Science and Technology, 24(5), 053001.CrossRef Lebedev, Y. A. (2015). Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Science and Technology, 24(5), 053001.CrossRef
30.
Zurück zum Zitat Mansfelyd D.A., Vodopyyanov A.V., Sintsov S.V., Chekmarev N.V., Preobrazhenskii E.I., Viktorov M.E. Atmospheric pressure discharge sustained by millimeter radiation in a waveguide plasmatron // Technical Physics Letters, (2023) Technical Physics Letters, 49(1):36. Mansfelyd D.A., Vodopyyanov A.V., Sintsov S.V., Chekmarev N.V., Preobrazhenskii E.I., Viktorov M.E. Atmospheric pressure discharge sustained by millimeter radiation in a waveguide plasmatron // Technical Physics Letters, (2023) Technical Physics Letters, 49(1):36.
31.
Zurück zum Zitat N. S. Ginzburg, M. Y. Glyavin, N. A. Zavol’skii, V. E. Zapevalov, M. A. Moiseev, and Y. V. Novozhilova, A proposal to use reflection with delay for achieving the self-modulation and stochastic regimes in millimeter-wave gyrotrons, Tech. Phys. Lett., vol. 24, no. 6, pp. 436–438, Jun. 1998.CrossRef N. S. Ginzburg, M. Y. Glyavin, N. A. Zavol’skii, V. E. Zapevalov, M. A. Moiseev, and Y. V. Novozhilova, A proposal to use reflection with delay for achieving the self-modulation and stochastic regimes in millimeter-wave gyrotrons, Tech. Phys. Lett., vol. 24, no. 6, pp. 436–438, Jun. 1998.CrossRef
32.
Zurück zum Zitat T. M. Antonsen, S. Y. Cai, and G. S. Nusinovich, Effect of window reflection on gyrotron operation, Phys. Fluids B Plasma Phys., vol. 4, no. 12, pp. 4131–4139, Dec. 1992.CrossRef T. M. Antonsen, S. Y. Cai, and G. S. Nusinovich, Effect of window reflection on gyrotron operation, Phys. Fluids B Plasma Phys., vol. 4, no. 12, pp. 4131–4139, Dec. 1992.CrossRef
33.
Zurück zum Zitat Sintsov S.V., Mansfelyd D.A., Veselov A.P., Fokin A.P., Ananichev A.A., Glyavin M.Yu., Vodopyyanov A.V. Decomposition of carbon dioxide in a discharge maintained by continuous focused sub-terahetz radiation at atmospheric pressure, (2023) Technical Physics Letters, 49(1):44. Sintsov S.V., Mansfelyd D.A., Veselov A.P., Fokin A.P., Ananichev A.A., Glyavin M.Yu., Vodopyyanov A.V. Decomposition of carbon dioxide in a discharge maintained by continuous focused sub-terahetz radiation at atmospheric pressure, (2023) Technical Physics Letters, 49(1):44.
34.
Zurück zum Zitat Konjević, N., Ivković, M., & Sakan, N. (2012). Hydrogen Balmer lines for low electron number densityplasma diagnostics. Spectrochimica Acta - Part B Atomic Spectroscopy, 76, 16. Konjević, N., Ivković, M., & Sakan, N. (2012). Hydrogen Balmer lines for low electron number densityplasma diagnostics. Spectrochimica Acta - Part B Atomic Spectroscopy, 76, 16.
35.
Zurück zum Zitat Y.P. Raizer and J.E. Allen, “Gas discharge physics” (Berlin: Springer, 1991).CrossRef Y.P. Raizer and J.E. Allen, “Gas discharge physics” (Berlin: Springer, 1991).CrossRef
Metadaten
Titel
Hybrid Subterahertz Atmospheric Pressure Plasmatron for Plasma Chemical Applications
verfasst von
S. V. Sintsov
A. V. Vodopyanov
D. A. Mansfeld
A. P. Fokin
A. A. Ananichev
A. A. Goryunov
E. I. Preobrazhensky
N. V. Chekmarev
M. Yu. Glyavin
Publikationsdatum
07.05.2024
Verlag
Springer US
Erschienen in
Journal of Infrared, Millimeter, and Terahertz Waves / Ausgabe 5-6/2024
Print ISSN: 1866-6892
Elektronische ISSN: 1866-6906
DOI
https://doi.org/10.1007/s10762-024-00987-w

Weitere Artikel der Ausgabe 5-6/2024

Journal of Infrared, Millimeter, and Terahertz Waves 5-6/2024 Zur Ausgabe