Skip to main content
Erschienen in: Journal of Infrared, Millimeter, and Terahertz Waves 5-6/2024

17.05.2024 | Research

W-band Dual-band Filter and Diplexer Based on Mixed TE301- and TE102-Mode Cavities

verfasst von: Jiang-Qiao Ding, Rong-Huai Nie, Yun Zhao, Jun Jiang, Kun Huang, Sheng Li

Erschienen in: Journal of Infrared, Millimeter, and Terahertz Waves | Ausgabe 5-6/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, waveguide dual-band filter and diplexer working on W-band are synthesized through cascading mixed TE301- and TE102-mode cavities as well as TE101-mode resonators. Based on the discussion of top resonance modes in single cavity, the TE301&TE102 dual-mode resonator which features oversized dimension, technological insensitivity and high Q-factor is the strong candidate for designing high-frequency filters and diplexers. For dual-band filter, such dual-mode resonator can be shared by both bands as T-junction, and each band can be independently controlled. Besides, a W-band diplexer is proposed based on the analogous method. Two extra zeros have also been generated for each channel with adopting the singlet concept. Finally, the filter and diplexer prototypes are machined by CNC-milling. The filter has obtained 3-dB FBWs of 4% (86.7–90.2 GHz) and 6.3% (96.7–103 GHz), low insertion losses (ILs) of -0.9 dB and -0.5 dB, as well as less than -16 dB return loss, respectively. The diplexer has achieved 3-dB FBWs of 4.9% (86.3–90.6 GHz) and 6.5% (96.9–103.4 GHz), low ILs of -0.7 dB and -0.4 dB, high insolation with more than 40 dB, respectively. All the experimental results including transmission zeros on out-of-band are very close to the simulations in the full band. The performance of dual-band filter and diplexer is highlighted comparing with the reported ones too.
Literatur
1.
Zurück zum Zitat A. Wootten and A. R. Thompson, “The Atacama large millimeter/ submillimeter array,” Proc. IEEE, vol. 97, no. 8, pp. 1463–1471, Aug. 2009.CrossRef A. Wootten and A. R. Thompson, “The Atacama large millimeter/ submillimeter array,” Proc. IEEE, vol. 97, no. 8, pp. 1463–1471, Aug. 2009.CrossRef
2.
Zurück zum Zitat D. Cuadrado-Calle, P. Piironen and N. Ayllon, “Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: current status and future trends,” IEEE Microw. Mag., vol. 23, no. 6, pp. 44-56, Jun. 2022.CrossRef D. Cuadrado-Calle, P. Piironen and N. Ayllon, “Solid-state diode technology for millimeter and submillimeter-wave remote sensing applications: current status and future trends,” IEEE Microw. Mag., vol. 23, no. 6, pp. 44-56, Jun. 2022.CrossRef
3.
Zurück zum Zitat P. Heydari, H. Wang, H. Mohammadnezhad and P. Nazari, “Energy efficient 100+ GHz transceivers enabling beyond-5G wireless communications,” IEEE Wireless Commun., vol. 28, no. 1, pp. 144-151, Feb. 2021.CrossRef P. Heydari, H. Wang, H. Mohammadnezhad and P. Nazari, “Energy efficient 100+ GHz transceivers enabling beyond-5G wireless communications,” IEEE Wireless Commun., vol. 28, no. 1, pp. 144-151, Feb. 2021.CrossRef
4.
Zurück zum Zitat V. Camarchia et al., “A review of technologies and design techniques of millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2957–2983, Jul. 2020.CrossRef V. Camarchia et al., “A review of technologies and design techniques of millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 7, pp. 2957–2983, Jul. 2020.CrossRef
5.
Zurück zum Zitat J.-Q. Ding, J. Hu, and S.-C. Shi, “350 GHz Bandpass filters using superconducting coplanar waveguide,” IEEE Trans. Terahertz Sci. Technol., vol. 12, no. 5, pp. 548~556, 2021.CrossRef J.-Q. Ding, J. Hu, and S.-C. Shi, “350 GHz Bandpass filters using superconducting coplanar waveguide,” IEEE Trans. Terahertz Sci. Technol., vol. 12, no. 5, pp. 548~556, 2021.CrossRef
6.
Zurück zum Zitat Z. Tan, Q.-Y. Zhang, Y.-L. Lei, Y. Zhao, and J.-Q. Ding, “Terahertz waveguide multiplexers: A review,” Microw. Opt. Technol. Lett. vol. 65, no. 7, pp. 1925–1935, 2023.CrossRef Z. Tan, Q.-Y. Zhang, Y.-L. Lei, Y. Zhao, and J.-Q. Ding, “Terahertz waveguide multiplexers: A review,” Microw. Opt. Technol. Lett. vol. 65, no. 7, pp. 1925–1935, 2023.CrossRef
7.
Zurück zum Zitat J. Ding, Y. Zhao, J.-X. Ge, and S. Shi, “A 90° waveguide hybrid with low amplitude imbalance in full W-band,” J. Infrared Milli. THz Waves, vol. 40, no. 4, pp. 429–434, 2019.CrossRef J. Ding, Y. Zhao, J.-X. Ge, and S. Shi, “A 90° waveguide hybrid with low amplitude imbalance in full W-band,” J. Infrared Milli. THz Waves, vol. 40, no. 4, pp. 429–434, 2019.CrossRef
8.
Zurück zum Zitat K.-D. Xu, et al., “Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs technology,” IEEE J. Electron Devi., vol. 10, pp. 152-156, Jan. 2022.CrossRef K.-D. Xu, et al., “Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs technology,” IEEE J. Electron Devi., vol. 10, pp. 152-156, Jan. 2022.CrossRef
9.
Zurück zum Zitat K. Zhou, C.-X. Zhou, and W. Wu, “Substrate-integrated waveguide dual-band filters with closely spaced passbands and flexibly allocated bandwidths,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 3, pp. 465–472, Mar. 2018.CrossRef K. Zhou, C.-X. Zhou, and W. Wu, “Substrate-integrated waveguide dual-band filters with closely spaced passbands and flexibly allocated bandwidths,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 3, pp. 465–472, Mar. 2018.CrossRef
10.
Zurück zum Zitat K. Zhou, C. -X. Zhou and W. Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filters design," IEEE Trans. Micro. Theory Techn., vol. 65, no. 5, pp. 1511–1524, May. 2017. K. Zhou, C. -X. Zhou and W. Wu, "Resonance characteristics of substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filters design," IEEE Trans. Micro. Theory Techn., vol. 65, no. 5, pp. 1511–1524, May. 2017.
11.
Zurück zum Zitat K. Zhou and K. Wu, "Substrate integrated waveguide multiband bandpass filters and multiplexers: current status and future outlook," IEEE J. Microwaves, vol. 3, no. 1, pp. 466-483, Jan. 2023.CrossRef K. Zhou and K. Wu, "Substrate integrated waveguide multiband bandpass filters and multiplexers: current status and future outlook," IEEE J. Microwaves, vol. 3, no. 1, pp. 466-483, Jan. 2023.CrossRef
12.
Zurück zum Zitat G. Xu, and M. Skorobogatiy, “Wired THz communications,” J. Infrared Milli. THz Waves, vol. 43, no. 4, pp. 728–778, 2022.CrossRef G. Xu, and M. Skorobogatiy, “Wired THz communications,” J. Infrared Milli. THz Waves, vol. 43, no. 4, pp. 728–778, 2022.CrossRef
13.
Zurück zum Zitat T. Kojima et al., “275–500-GHz wideband waveguide SIS mixers,” IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 6, pp. 638–646, Oct. 2018.CrossRef T. Kojima et al., “275–500-GHz wideband waveguide SIS mixers,” IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 6, pp. 638–646, Oct. 2018.CrossRef
14.
Zurück zum Zitat S. Bryan, et al., “A compact filter-bank waveguide spectrometer for millimeter wavelengths,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 4, pp. 598–604, Jul. 2015.CrossRef S. Bryan, et al., “A compact filter-bank waveguide spectrometer for millimeter wavelengths,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 4, pp. 598–604, Jul. 2015.CrossRef
15.
Zurück zum Zitat X. Cao, Z. Tang, and J. Bao, “Design of a dual-band waveguide filter based on micromachining fabrication process,” IET Microw. Antennas Propag., vol. 10, no. 4, pp. 459–463, 2016.CrossRef X. Cao, Z. Tang, and J. Bao, “Design of a dual-band waveguide filter based on micromachining fabrication process,” IET Microw. Antennas Propag., vol. 10, no. 4, pp. 459–463, 2016.CrossRef
16.
Zurück zum Zitat J.-P. Duan, X.-X. Shen, H. Xiao, B.-Z. Zhang and Q. Bai, “Micromachined W-band dual-band quasi-elliptic waveguide filter,” Microelectronics J., vol. 115, pp. 1-4, Aug. 2021.CrossRef J.-P. Duan, X.-X. Shen, H. Xiao, B.-Z. Zhang and Q. Bai, “Micromachined W-band dual-band quasi-elliptic waveguide filter,” Microelectronics J., vol. 115, pp. 1-4, Aug. 2021.CrossRef
17.
Zurück zum Zitat Y. Huang et al., "A WR 3 dual band bandpass filter based on parallel coupling structure," Microsyst. Technol., vol. 23, pp. 2553-2559, Jun. 2016.CrossRef Y. Huang et al., "A WR 3 dual band bandpass filter based on parallel coupling structure," Microsyst. Technol., vol. 23, pp. 2553-2559, Jun. 2016.CrossRef
18.
Zurück zum Zitat X. Shang, M. Ke, Y. Wang and M. J. Lancaster, “WR-3 band waveguides and filters fabricated using SU-8 photoresist micromachining technology,” IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 6, pp. 629-637, Nov. 2012.CrossRef X. Shang, M. Ke, Y. Wang and M. J. Lancaster, “WR-3 band waveguides and filters fabricated using SU-8 photoresist micromachining technology,” IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 6, pp. 629-637, Nov. 2012.CrossRef
19.
Zurück zum Zitat K. Zhou, J. -Q. Ding, C. -X. Zhou and W. Wu, “W-band dual-band quasi-elliptical waveguide filter with flexibly allocated frequency and bandwidth ratios,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 3, pp. 206-208, Mar. 2018.CrossRef K. Zhou, J. -Q. Ding, C. -X. Zhou and W. Wu, “W-band dual-band quasi-elliptical waveguide filter with flexibly allocated frequency and bandwidth ratios,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 3, pp. 206-208, Mar. 2018.CrossRef
20.
Zurück zum Zitat J. Chen, S. Zhang, C. Zhang and Y. Li, “W-band dual-band waveguide band-pass filter using dual-mode cavities,” Electron. Lett., vol. 54, no. 25, pp. 1444-1446, Dec. 2018.CrossRef J. Chen, S. Zhang, C. Zhang and Y. Li, “W-band dual-band waveguide band-pass filter using dual-mode cavities,” Electron. Lett., vol. 54, no. 25, pp. 1444-1446, Dec. 2018.CrossRef
21.
Zurück zum Zitat C. Bartlett and M. Höft, “Dual-mode dual-band bandpass filter design utilizing cylindrical TM-mode cavities,” Electron. Lett., vol. 57, no. 8, pp. 328-330, Apr. 2021.CrossRef C. Bartlett and M. Höft, “Dual-mode dual-band bandpass filter design utilizing cylindrical TM-mode cavities,” Electron. Lett., vol. 57, no. 8, pp. 328-330, Apr. 2021.CrossRef
22.
Zurück zum Zitat C. Bartlett and M. Höft, "Fully inline and symmetric dual-mode dual-band bandpass filters for millimetre-wave applications," in IEEE MTT-S International Microwave Filter Workshop (IMFW), Nov. 2021, pp. 323–325. C. Bartlett and M. Höft, "Fully inline and symmetric dual-mode dual-band bandpass filters for millimetre-wave applications," in IEEE MTT-S International Microwave Filter Workshop (IMFW), Nov. 2021, pp. 323–325.
23.
Zurück zum Zitat Y. -L. Cheng, H. -W. Chen, P. -D. Huang and C. -Y. Chang, "A W-band quadrature hybrid coupled substrate integrated waveguide diplexer," in Asia-Pacific Microwave Conference (APMC), Dec. 2015, pp. 1–3. Y. -L. Cheng, H. -W. Chen, P. -D. Huang and C. -Y. Chang, "A W-band quadrature hybrid coupled substrate integrated waveguide diplexer," in Asia-Pacific Microwave Conference (APMC), Dec. 2015, pp. 1–3.
24.
Zurück zum Zitat T. Kojima, A. Gonzalez, S. Asayama, and Y. Uzawa, “Design and development of a hybrid-coupled waveguide multiplexer for a multiband receiver,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 1, pp. 10-19, Jan. 2017. T. Kojima, A. Gonzalez, S. Asayama, and Y. Uzawa, “Design and development of a hybrid-coupled waveguide multiplexer for a multiband receiver,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 1, pp. 10-19, Jan. 2017.
25.
Zurück zum Zitat A. Morini, G. Venanzoni, M. Farina and T. Rozzi, “Practical design of a high-power tuning-less W-band triplexer for ground radar surveillance systems,” IET Microw., Antennas Propag., vol. 1, no. 4, pp. 822–826, Mar. 2007. A. Morini, G. Venanzoni, M. Farina and T. Rozzi, “Practical design of a high-power tuning-less W-band triplexer for ground radar surveillance systems,” IET Microw., Antennas Propag., vol. 1, no. 4, pp. 822–826, Mar. 2007.
26.
Zurück zum Zitat C. Bartlett, J. Bornemann, and M. Höft, “3D-Printing and high precision milling of W-band filter components with admittance inverter sequences,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 11, no. 12, pp. 2140–2147, Dec. 2021.CrossRef C. Bartlett, J. Bornemann, and M. Höft, “3D-Printing and high precision milling of W-band filter components with admittance inverter sequences,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 11, no. 12, pp. 2140–2147, Dec. 2021.CrossRef
27.
Zurück zum Zitat X. Zhao et al., “Silicon micromachined D-band diplexer using releasable filling structure technique,” IEEE Trans. Micro. Theory Tech., vol. 68, no. 8, pp. 3448-3460, Aug. 2020.CrossRef X. Zhao et al., “Silicon micromachined D-band diplexer using releasable filling structure technique,” IEEE Trans. Micro. Theory Tech., vol. 68, no. 8, pp. 3448-3460, Aug. 2020.CrossRef
28.
Zurück zum Zitat Y. Yu et al., “D-band waveguide diplexer fabricated using micro laser sintering,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 12, no. 9, pp. 1446–1457, Sep. 2022.CrossRef Y. Yu et al., “D-band waveguide diplexer fabricated using micro laser sintering,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 12, no. 9, pp. 1446–1457, Sep. 2022.CrossRef
29.
Zurück zum Zitat C. Bartlett, O. Glubokov, F. Kamrath and M. Höft, “Highly selective broadband mm-wave diplexer design,” IEEE Micro. Wireless Compon. Lett., Sep. 2022. C. Bartlett, O. Glubokov, F. Kamrath and M. Höft, “Highly selective broadband mm-wave diplexer design,” IEEE Micro. Wireless Compon. Lett., Sep. 2022.
30.
Zurück zum Zitat J.-Q. Ding, S.-C. Shi, K. Zhou, Y. Zhao, D. Liu, and W. Wu, “WR-3 band quasi-elliptical waveguide filters using higher order mode resonances,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 3, pp. 302–309, May 2017.CrossRef J.-Q. Ding, S.-C. Shi, K. Zhou, Y. Zhao, D. Liu, and W. Wu, “WR-3 band quasi-elliptical waveguide filters using higher order mode resonances,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 3, pp. 302–309, May 2017.CrossRef
31.
Zurück zum Zitat J.-Q. Ding, S.-C. Shi, K. Zhou, D. Liu, and W. Wu, “Analysis of 220-GHz low-loss quasi-elliptic waveguide bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, pp. 648–650, Jul. 2017.CrossRef J.-Q. Ding, S.-C. Shi, K. Zhou, D. Liu, and W. Wu, “Analysis of 220-GHz low-loss quasi-elliptic waveguide bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, pp. 648–650, Jul. 2017.CrossRef
32.
Zurück zum Zitat S. Groiss, “Numerical analysis of lossy cavity resonators,” Ph.D. dissertation, Tech. Univ. Graz, Graz, Austria, Jun. 1996. S. Groiss, “Numerical analysis of lossy cavity resonators,” Ph.D. dissertation, Tech. Univ. Graz, Graz, Austria, Jun. 1996.
33.
Zurück zum Zitat J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001, chs. 8–10. J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: Wiley, 2001, chs. 8–10.
34.
Zurück zum Zitat Y. Xiao, P. Shan, K. Zhu, H. Sun and F. Yang, “Analysis of a novel singlet and its application in THz bandpass filter design,” IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 3, pp. 312–320, May. 2018. Y. Xiao, P. Shan, K. Zhu, H. Sun and F. Yang, “Analysis of a novel singlet and its application in THz bandpass filter design,” IEEE Trans. Terahertz Sci. Technol., vol. 8, no. 3, pp. 312–320, May. 2018.
35.
Zurück zum Zitat S. Bastioli and R. V. Snyder, “Nonresonating modes do it better!: Exploiting additional modes in conjunction with operating modes to design better quality filters,” IEEE Micro. Mag., vol. 22, no. 1, pp. 20-45, Jan. 2021.CrossRef S. Bastioli and R. V. Snyder, “Nonresonating modes do it better!: Exploiting additional modes in conjunction with operating modes to design better quality filters,” IEEE Micro. Mag., vol. 22, no. 1, pp. 20-45, Jan. 2021.CrossRef
Metadaten
Titel
W-band Dual-band Filter and Diplexer Based on Mixed TE301- and TE102-Mode Cavities
verfasst von
Jiang-Qiao Ding
Rong-Huai Nie
Yun Zhao
Jun Jiang
Kun Huang
Sheng Li
Publikationsdatum
17.05.2024
Verlag
Springer US
Erschienen in
Journal of Infrared, Millimeter, and Terahertz Waves / Ausgabe 5-6/2024
Print ISSN: 1866-6892
Elektronische ISSN: 1866-6906
DOI
https://doi.org/10.1007/s10762-024-00989-8

Weitere Artikel der Ausgabe 5-6/2024

Journal of Infrared, Millimeter, and Terahertz Waves 5-6/2024 Zur Ausgabe