Skip to main content
Erschienen in: e & i Elektrotechnik und Informationstechnik 7/2022

Open Access 14.10.2022 | Originalarbeit

Techno–economic simulation and evaluation of scalable ‘energy cells’ locally generating renewable energy

verfasst von: Karthik Subramanya Bhat, Johanna Ganglbauer, Elina Bosch

Erschienen in: e+i Elektrotechnik und Informationstechnik | Ausgabe 7/2022

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ERA-Net SES project Regional Renewable Energy Cells (R2EC) [1] aims at developing a scalable system for decentralized, interacting ‘energy cells’ with a high concentration of locally generated renewable energy. ‘Energy cells’ are essentially Renewable Energy Communities (ECs) in the European context. The system aims at maximizing the utilization of locally generated renewable energy through Electrical Storage (ES) as well as high-electric applications like e‑heating, Heat Pumps (HPs), and E‑Vehicles (EVs). The system is also designed to interact with other energy cells locally, thus, improving the utilization of locally generated energy.
A variety of different adjacent energy cells in three countries, Austria (AT), Belgium (BE), and Norway (NO), are analyzed, and the results are used for the development of regional and renewable energy cell systems. This approach aims at developing tailor-made solutions that meet the different local and regional requirements and the electrical energy demand of the observed energy cells. A unique opportunity is created, as the three countries are at varying levels of regional development in the field of energy communities, and the regional requirements and conditions differ significantly. A comprehensive investigation of the technical and economic viability of the ECs in the three regions is conducted on a simulation level. The technical simulation results show an increased self-consumption of individual users and the overall cell in all of the observed testbeds, while the economic analysis shows economic benefits at varying levels in each of the observed testbeds. The implemented R2EC system ascertains both technical and economic viability in the observed testbeds.
Hinweise
An erratum to this article is available online at https://​doi.​org/​10.​1007/​s00502-022-01101-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
API
Application Programming Interface
AT
Austria
BE
Belgium
CAPEX
Capital Expenditure
CEP
Clean Energy Package
C_HP
Collective Heat Pump
EAG
Erneuerbaren Ausbau Gesetz
EAR
Energy Autrarky Rate
EC
Energy Community
ER
Electrification Rate
ES
Energy Storage/Battery storage
EV
Electric Vehicle
HP
Heat Pump
LEC
Local Energy Community
MILP
Mixed Integer Linear Programming
MPC
Model Predictive Control
NO
Norway
NPV
Net Present Value
OPEX
Operating Expenses
PV
Photo Voltaic
R2EC
Regional Renewable Energy Cells
REC
Regional Energy Community
RED
Renewable Energy Directive
SCR
Self-Consumption Rate
Wa
Wallonia
WT
Wind Turbine/Generation

1 Introduction

The Clean Energy Package (CEP) and the subsequent new Renewables Directive (RED) 2018/2001 [2] empowers the consumers in the system, introducing the concept of renewable self-consumption and energy communities. The CEP introduced new rules on support schemes, to be granted in an open, transparent, competitive, non-discriminatory and cost-effective manner. The added incentive has led to an increased interest in the self-consumption of the renewable energy generated, also in improving the self-sufficiency rates of ECs and individual participants. Furthermore, with the current European energy crisis and inflation, which has resulted in exuberant energy prices, ECs have gained more relevance, especially focusing on self-consumption of locally generated electricity to reduce energy related costs.

1.1 Energy communities in the European context

The development of ECs within the EU member states can be described as at the initial phase, as several key issues still remain unanswered [3]. A study [4] clearly describes the barriers of the transposition of the EU guidelines for ECs into national law, recognizing the need for experts and research to be closely involved with the law making process for EC development. Studies [4, 5] also highly recommend that the full implementation of the CEP rules into national law to be critical for the viability and fast-track development of ECs within the member states. Identification of critical areas to foster the implementation of such regulations would hence be of high significance. An ‘Energy System’ approach towards ECs is also recommended [5], where new business models are introduced in a way ensuring cost-efficiency for all members and real cost savings within the system.
The investigations conducted within the scope of the project R2EC make way for an in-depth analysis of the technical and economic viability of ECs in a European context, identifying key issues towards the development of ECs in the observed regions. In this context, a simulation model and a control strategy based on an extensive implementation software was developed in python. The simulation results were then used for an economic analysis of the observed test beds, investigating the economic viability of the implementation of the R2EC system. Several recommendations for ensuring the viability of the ECs were then derived from these results.

1.2 Energy cell

An ‘Energy Cell’ in the project R2EC is defined as a scalable participant locally generating renewable energy, while providing certain features like flexibilities with high electricity use, to the energy system. An energy cell roughly represents a renewable EC in the European context. The smallest unit in an energy cell is defined to be the household. The R2EC system is designed to allow the interaction of participation on different levels within the energy cell, acting on interfaces on the household, community, cell etc. level.

2 Scenarios and simulation model

2.1 Scenario definition

A multitude of futuristic scenarios for the observed testbeds, including the available flexibilities like e‑heating, HPs, Batteries (ESs), and EVs were designed to be implemented with the simulation model, partly based on the feedbacks from the stakeholder workshops and user surveys, organized at the testbeds [6]. Table 1 illustrates the several scenarios investigated through the technical simulations.
Table 1
General overview of defined scenarios for the designated test beds
Testbed
Country
PV
Wind
EV
HP
ES
Investigated scenarios
Badesiedlung (LEC)
AT
x
6
Sankt Andrä Wörden (REC)
AT
x
6
Tulbing (LEC)
AT
x
3
Tulbing + surroundings (REC)
AT
x
3
Wallonia
BE
x
24 (2a)
Tripod houses
NO
16 (4a)
aDifferent Energy Cell configurations (Pools)
The AT energy cells vary in size, member types, and organisational framework. While two selected Local ECs (LECs) focus on private households, the other two Regional ECs (RECs) are designed to include small businesses and community amenities. Consumption data from 97 private households, 10 small enterprises and 13 community amenities, as well as production data from 26 PV installations were measured, collected, and prepared in 15-minute time resolution, building the basis for the 18 close-to-reality scenarios. The testbeds were simulated for an entire reference year for 3 different frameworks—2021 (actual state), 2030 (near future) and 2040 (far future), with 2021 representing an EC based on actual consumption and production, and 2030 or 2040 assuming increasing Electrification Rates (ERs) and PV penetration in the future.
For BE, two prototypical cells were designed based on measurement data and stakeholder survey results. As the grid injection of surplus generation is incentivized in BE, a public sport center with 200 kWp PV installation is the only participant injecting electricity to the energy community, while the others sell their surplus to the grid. Pools of 100 households with varying consumption levels (A—low, B—medium, C—high, and D—very high), production levels (0—no generation, 1—small, 2—medium, 3—large), some along with flexibilities like EVs and HPs were designed. These pools were simulated with a base-case (no energy cell, no control), with perfect forecasts, data driven forecasts, two different distribution keys, and with consideration of ES. The nomenclature of the household profiles are as described in Table 2.
Table 2
Nomenclature of profiles in the Belgian scenarios
Consumption
Generation
HP
EV
Profile name
C
2
x
C2_HP
C
3
x
C3_EV
D
3
x
D3_HP
The NO testbed consists of 20 low energy buildings, each equipped with PV installations. Wind generation (WT) is also considered in half of the scenarios and is shared between the members. With varying ERs and production rates, 4 pools were designed. In total, 16 scenarios were evaluated (4 pools with/without WT, with either individual/collective heating system).

2.2 Simulation model

The simulation model [7] is based on a Multi-Agent System (MAS), where measured consumption and production data were combined with modelled ESs, EVs, HPs, heat storages and buildings. These flexibilities were virtually controlled with the aim of maximal self-consumption [8]. While the operation of flexibilities changes within the simulation, the distribution of electricity follows a static, demand-based distribution key in the designated energy cells. In some BE scenarios, a hybrid distribution key was also tested.
The simulated control is based on the principle of Model Predictive Control (MPC) [9], where a forecast-based optimization is used as the initial point of the control, and deviations between the optimization and reality are accounted for by repeated actualizations. Machine Learning algorithms were used to provide data-driven forecasts. An overview of the control strategy is provided in Fig. 1. The optimization itself is formulated as a Mixed Integer Linear Programming (MILP) problem, with the definition of an objective function [10, 11], as described by Eq. 1, with 24 constraints defining the energy cell system.
Equation 1 Objective function used in the simulation model
$$min\left({\sum }_{h=0}^{N_{h}}{\sum }_{t=0}^{112}g\_ e\left(h{,}t\right)\cdot ff\left(h\right)+{\sum }_{t=0}^{112}g\_ c\left(t\right)+{\sum }_{t=0}^{112}\left(h{,}bs{,}t\right){,}\right)$$
where
Nh:
Number of houses (members) of the energy cell
h:
running index over houses (energy cell members)
t:
running index over time
g_e:
electricity provided from the grid for each house at each time step (Wh)
g_c:
net amount of electricity provided from the grid taking the entire energy cell into concideration in (Wh)
ff:
fairness factor
ε:
placeholder summarizing various tolerance measures
The solver aims at minimizing the objective function, i.e. minimizing grid purchase of the energy cell and all energy cell members, and thus maximizing individual and collective self-consumption. The MILP problem was formulated and solved in python, where pyomo was installed to create an API to the open source cbc solver [12]

3 Simulation results and evaluation

3.1 Simulation results

The simulation results for all the designated test beds showed increased Self-Consumption Rates (SCRs), both in individual users and within the overall energy cell. The Energy Autarky rates (EARs) are also seen to increase.
In the AT scenarios, a significantly large increase of SCR (~ 30%) from the base case in individual users, and ~ 3% in the overall cell was observed. These significant increases in SCRs were observed particularly in the scenarios involving EVs, which can be charged during the day.
The Fig. 2 visualizes the simulation results for the AT test beds. A decrease in SCRs is observed for the year 2030, mainly due to the massive expansion of PV in the concerned testbeds, leading to higher generation peaks, sometimes even higher than the demand of the entire energy cell. The integration of ESs counterbalanced this effect in the 2040 scenarios, resulting in increased SCRs despite of further increased production in comparison to 2030.
The BE scenarios showed a similar increase in SCRs, with an increase of ~ 32% in individual users, especially in the scenario involving ES. The Fig. 3 illustrates the results for a selected BE pool.
The SCRs for ‘perfect forecasts’ increase in comparison to the ‘no energy cell’ base case. When considering data-driven forecasts, deviations from reality are accounted for in the operation of flexibilities, which may have resulted in a decrease of SCRs of individual members, and still needs to be solved in the real implementation. When including an additional ES to the sport center, these deviations are compensated, leading to improved SCRs of individual members, and the sport center itself.
The simulation results for the NO testbed also showed higher SCRs, mainly with scenarios involving higher ERs (electric heating, EVs), collective community HPs (C_HP), and WT, as illustrated in Fig. 4. The highest SCR increase of 20% was observed in Pool 1, with a C_ HP and WT. Furthermore, the increased ERs due to EVs led to the increase of SCRs, mainly due to the increased flexibility they provide through charging. It was observed that with C_HP and WT, the SCRs in all pools are significantly high in comparison with the other cases.
However, the energy interactions within the energy cell were comparatively low in the NO case, as the consumption profiles and behaviours, along with the generation profiles for WT and PV were quite similar within the energy cell.

3.2 Economic evaluation

The economic analysis was conducted based on Net Present Values (NPVs) and the evaluation is done through the calculated cash flows (i.e., all additional revenue and cost streams in the case of the EC foundation compared to the case without EC), using the simulated results for 20 years. The results of specific scenarios (i.e. different penetration of RE and ERs among the EC members) for each region were selected as the basis for the economic evaluation.
A base assumption of electricity tariff, remuneration for grid injection, community management costs and the equipment costs were assumed, as displayed in the Table 3. The community management costs in each case was assumed to be 50 €/month, and the cost of each control device was assumed to be € 1000 with 10 years of lifetime. The base case assumptions were mainly derived from real EC feedbacks, and could be an overestimation in some cases. The Fig. 5 illustrates the economic evaluation for the selected scenarios in the AT test beds. Under the base assumptions for energy cell management costs, 8 cases were economically attractive (i.e., net positive cash flow). The considered cost assumptions and the addition of ES in the year 2040 (assuming expected cost reduction for ES achievable by that year), and under the considered increase in the ERs within the energy cell appears to be profitable in the region. It was also observed that the scenarios with diverse consumption profiles, including large electricity consumers like small industries and businesses gained the most benefit.
Table 3
Base assumptions for the economic analysis
Region
Energy price
(c€/kWh)
Grid injection
(c€/kWh)
PV CAPEX
(€/Wp) (2020/2030/2040)
PV OPEX
(€/kWp.a)
ESS CAPEX
(€/kWh) (2040)
ESS OPEX
(% of initial CAPEX)
Support mechanism
AT
7
4
0.8/
0.75/
0.7a
8
100
1.5
2–3 c/kWh (LEC), 3–5.5 c/kWh (REC)
Network Tariff exemption
BE
(Wa)
7
4
0.8
8
2.5 c/kWh
‘Green Contribution’
NO
9
3.5
None
aIn the 2020 case, the investment premium under the Austrian Renewable Energy Expansion Act (EAG) is considered.
In the BE testbed, where support mechanisms [13] for ECs do not include the reduced network tariffs, and no economic interest for individual PV systems to participate in ECs exist [14], the economic benefit to the participants is non-existent under the base assumptions. Fig. 6 briefly summarizes the NPV cash flows for selected BE scenarios.
Nevertheless, there is a relatively high uncertainty level concerning management costs and equipment costs for energy communities. Assuming lower costs compared to the base case (i.e., € 250 per control device and almost non-existent monthly management costs), economic profitability is reached in 5 out of the 8 investigated cases. The main reason for the original base case to be not profitable is the restrictive regulatory framework in BE. This prevents a sufficient economic value creation for a viable Business Model. Furthermore, the absence of large electricity consumers like commercial consumers combined with the presence of prosumer who already self-consumed from their own PV systems limited the overall self-consumption potential within the energy cell, which could also be the reason for the smaller economic gains.
With no EC-specific regulatory framework in place, and very similar consumption and generation profiles within the EC participants, the NO testbed was understandably the least profitable in comparison. The NPV cash flows under the original base assumptions for the NO scenarios are as shown in Fig. 7. Considering that the main objective of the test bed establishment was to check the self-sufficiency of such an energy cell/EC in the country, and to promote participation, the improved individual SCRs with the designed system is already highly economically attractive. This can hardly be improved by creating an energy cell/EC, without the proper regulatory framework.
Again, given the high uncertainty level concerning management costs and equipment costs for ECs in NO, a sensitivity analysis was conducted, which showed that half of the considered cases were economically viable, with a reduced community management costs of 25 €/month and € 500 per control device. With a further reduced cost of € 250 per control device, all of the considered cases were observed to reach break-even, and be economically viable.

4 Discussion

From the technical simulation results, and the economic analysis it was evident that there were advantages of founding an energy cell/EC with the R2EC system in the observed test beds. The Table 4 illustrates the quantification of these positive effects in the observed testbeds. These advantages are seen to be strongly dependent on the generation and consumption patterns of the individual energy cell members. For the AT scenarios, the SCRs of the overall energy cells increased ~ 20–~ 60%. The EARs thereby are also observed to be improved by ~ 6–~ 12%. The BE testbeds showed similar results despite having different framework conditions than AT. The foundation of an EC is observed to increase the SCRs by 19–22% in the investigated scenarios, and EARs improving by 10–13%. In the NO case, as each individual in the energy cell was designed to have a PV installation (in AT & BE, there are always pure consumers in the mix), the quantified advantages were observed to be comparatively lower. The SCRs are seen to increase by 10–13% and the EARs by 8–11%.
Table 4
Quantification of positive effects of establishing an EC
Country
Scenario
Production
(MWh)
Consumption
(MWh)
Self-Consumption
(MWh)
Distribution within energy cell
(MWh)
Increase of SCRsdue to energy cell
(%)
Increase of autarky ratedue to energy cell
(%)
Net Cash Flow
(k€)
AT
Tulbing 2021
94
315
70
18
20
6
35
AT
Tulbing + surrounding 2021
205
581
133
51
25
9
59
AT
Badesiedlung 2021
10
58
3
7
66
11
9
AT
St. Andrä—Wördern 2021
161
447
86
52
32
12
60
BE
Pool 8 − high ER
316
594
77
61
19
10
41
NO
Pool 1 − low ER
138
165
55
18
13
11
25
NO
Pool 1 − low ER + WT
146
163
66
15
10
9
23
NO
Pool 2 − high ER
138
212
77
17
12
8
22
NO
Pool 2 − high ER + WT
146
212
83
17
12
8
24
The economic evaluation of the testbeds also highlighted some of the underlying advantages in the implementation of the R2EC system in the observed regions. The AT testbeds were the most economically attractive, with 8 out of 16 investigated cases having the net positive cash flows with the initial base assumptions. In the BE and the NO testbed regions, modifications to the base case were needed to achieve sufficient economic gains. With the current framework, it is clearly understandable that the EC management and other manageable costs could and should be optimized and responsibilities delegated within the cell/EC. Though studies [15] recommend outsourcing EC management roles to third parties for efficiency, with the appropriate knowledge dissemination and training, EC management roles could be fulfilled by EC members and could result in monetary savings within the EC. With a strategically planned regulatory framework development in place, and the appropriate cost allocations, it is evident that there can be economic benefits both to the individual participant, and also the overall EC.

5 Conclusions

The simulation results and analysis, along with the economic evaluations were presented to the stakeholders in the respective testbeds through the co-creation workshops. On one hand, it was recognized that there were both technical and economic advantages in implementing the R2EC system in the observed testbeds. Despite the insufficient economic advantages (BE and NO), the continued interest of the stakeholders in their participation in an EC, shows that with the right regulatory framework and support mechanisms, the development of ECs within the investigated regions would accelerate considerably and their overall energy sector would benefit both technically and economically. On the other hand, these technical and economic evaluations could not only be a reference for the design of a self-sufficient and economically beneficial energy cell/community, but also be a basis for EC regulatory frameworks evolution in the respective countries.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat European Parliament and Council of the European Union (2018) DIRECTIVE (EU) 2018/2001of the European Parliament and Council of 11 December 2018: on the promotion of the use of energy from renewable sources European Parliament and Council of the European Union (2018) DIRECTIVE (EU) 2018/2001of the European Parliament and Council of 11 December 2018: on the promotion of the use of energy from renewable sources
5.
Zurück zum Zitat Caramizaru A, Uihlein A (2020) Energy communities: An overview of energy and social innovation. JRC science for policy report. Publications Office of the European Union, Luxembourg Caramizaru A, Uihlein A (2020) Energy communities: An overview of energy and social innovation. JRC science for policy report. Publications Office of the European Union, Luxembourg
6.
Zurück zum Zitat Bell D, Werner A, Ettewein F (2020) Stakeholder analysis report and report about potential business models applicable to the observed energy cells: D3.1 / D3.2 Regional Renewable Energy. Cells Bell D, Werner A, Ettewein F (2020) Stakeholder analysis report and report about potential business models applicable to the observed energy cells: D3.1 / D3.2 Regional Renewable Energy. Cells
7.
Zurück zum Zitat Ganglbauer J (2022) Report on the simulation of observed energy cells: Regional Renewable Energy Cells (R2EC). Deliverable 4.1 (Public). Vienna Austria Ganglbauer J (2022) Report on the simulation of observed energy cells: Regional Renewable Energy Cells (R2EC). Deliverable 4.1 (Public). Vienna Austria
8.
Zurück zum Zitat Weissenbacher M, Nacht T, Pratter R et al (2021) Evaluation of the data quality of Energy cells in the Project R2EC. In: Gremmel-Simon H (ed) Energie – Gebäude – Umwelt, 1st edn. Technologie und Klimawandel (FH Burgenland, vol 22. Leykam, Graz Weissenbacher M, Nacht T, Pratter R et al (2021) Evaluation of the data quality of Energy cells in the Project R2EC. In: Gremmel-Simon H (ed) Energie – Gebäude – Umwelt, 1st edn. Technologie und Klimawandel (FH Burgenland, vol 22. Leykam, Graz
9.
Zurück zum Zitat Zhang P (2010) Industrial control engineering. In: Advanced Industrial Control Technology. Elsevier, pp 41–70CrossRef Zhang P (2010) Industrial control engineering. In: Advanced Industrial Control Technology. Elsevier, pp 41–70CrossRef
11.
Zurück zum Zitat Kremers EA (2013) Modelling and Simulation of Electrical. Energy, Systems through a Complex Systems Approach using Agent-Based Models. KIT Scientific Publishing Kremers EA (2013) Modelling and Simulation of Electrical. Energy, Systems through a Complex Systems Approach using Agent-Based Models. KIT Scientific Publishing
13.
Zurück zum Zitat Standal K, Aakre S (2021) Report on Technical, Legal, Institutional and Policy Conditions: Deliverable 2.1 (Public). Assessment. Public Deliverable Document number: COME RES-953040 Standal K, Aakre S (2021) Report on Technical, Legal, Institutional and Policy Conditions: Deliverable 2.1 (Public). Assessment. Public Deliverable Document number: COME RES-953040
15.
Zurück zum Zitat Blixt F METHA & VUB (2020) Legislative options and obstacles for energy communities in. Summary of key issues identified & recommendations, Belgium Blixt F METHA & VUB (2020) Legislative options and obstacles for energy communities in. Summary of key issues identified & recommendations, Belgium
Metadaten
Titel
Techno–economic simulation and evaluation of scalable ‘energy cells’ locally generating renewable energy
verfasst von
Karthik Subramanya Bhat
Johanna Ganglbauer
Elina Bosch
Publikationsdatum
14.10.2022
Verlag
Springer Vienna
Erschienen in
e+i Elektrotechnik und Informationstechnik / Ausgabe 7/2022
Print ISSN: 0932-383X
Elektronische ISSN: 1613-7620
DOI
https://doi.org/10.1007/s00502-022-01068-3

Weitere Artikel der Ausgabe 7/2022

e & i Elektrotechnik und Informationstechnik 7/2022 Zur Ausgabe