Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Direct Ink Writing with Lunar Regolith: An Avenue for Off-Earth Construction

verfasst von : T. Schild, A. Cowley, B. Grundström, N. Garrivier, N. Hensch

Erschienen in: Adaptive On- and Off-Earth Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Long-term human and robotic exploration missions to the Moon, Mars and beyond, will require far higher levels of autonomy, flexibility and resilience than what is currently the case in low Earth orbit. Off-Earth manufacturing capabilities, especially ones using in situ resources, are an essential asset in this regard. They can indeed allow much more independence from Earth-based supplies and resources while enabling more audacious mission objectives. As also discussed in the chapter by Rich et al., additive manufacturing (AM) techniques are prime candidates for off-Earth applications. They allow a large variety of geometries to be produced using one single system, including complex 3D structures that cannot be achieved through conventional means. This makes them adaptable to evolving mission scenarios and unforeseen needs. In addition, they integrate readily with digital design techniques, supporting approaches such as computational design optimizations and generative design. Finally, AM allows a very efficient use of feedstock material by minimising the amount of scrap material. This is very beneficial in off-Earth scenarios where supplies are limited.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. Altun AA, Ertl F, Marechal M, Makaya A, Sgambati A, Schwentenwein M (2021) Additive manufacturing of lunar regolith structures. Open Ceram 5:100058. https://​doi.​org/​10.​1016/​j.​oceram.​2021.​100058View Article
  2. Balla VK, Roberson LB, O’Connor GW, Trigwell S, Bose S, Bandyopadhyay A (2012) First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyp J 18(6):451–457. https://​doi.​org/​10.​1108/​1355254121127199​2View Article
  3. Beyer LA (1985) Lunarcrete: a novel approach to extraterrestrial construction. In: Engineering with lunar and asteroidal materials, in Space manufacturing, No. 5. American Institute of Aeronautics and Astronautics, New York, pp 172–178
  4. Buchner C, Pawelke RH, Schlauf T, Reissner A, Makaya A (2018) A new planetary structure fabrication process using phosphoric acid. Acta Astronaut 143(June 2017): 272–284. https://​doi.​org/​10.​1016/​j.​actaastro.​2017.​11.​045
  5. Caprio L, Demir AG, Previtali B, Colosimo BM (2020) Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion. Addit Manuf 32(July 2019):101029. https://​doi.​org/​10.​1016/​j.​addma.​2019.​101029
  6. Cesaretti G, Dini E, De Kestelier X, Colla V, Pambaguian L (2014) Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut 93:430–450. https://​doi.​org/​10.​1016/​j.​actaastro.​2013.​07.​034View Article
  7. Correa S et al (2021) Translational applications of hydrogels. Chem Rev 121(18):11385–11457. https://​doi.​org/​10.​1021/​acs.​chemrev.​0c01177View Article
  8. Dove CA, Bradley FF, Patwardhan SV (2016) Seaweed biopolymers as additives for unfired clay bricks. Mater Struct Constr 49(11):4463–4482. https://​doi.​org/​10.​1617/​s11527-016-0801-0View Article
  9. Fiske M, Edmunson J (2017) Additive construction with mobile emplacement (ACME) 3D printing structures with in-situ resources
  10. Goulas A, Friel RJ (2016) 3D printing with moondust. Rapid Prototyp J 22(6):864–870. https://​doi.​org/​10.​1108/​RPJ-02-2015-0022View Article
  11. Grugel RN, Toutanji H (2008) Sulfur “concrete” for lunar applications—sublimation concerns. Adv Space Res 41(1):103–112. https://​doi.​org/​10.​1016/​j.​asr.​2007.​08.​018View Article
  12. Grundström B, Schild T, Cowley A (2021) Additive manufacturing of lunar regolith simulant using direct ink writing. Spool 8(2):55–69. https://​doi.​org/​10.​7480/​SPOOL.​2021.​2.​5268View Article
  13. Horiguchi T, Saeki N, Yoneda T, Hoshi T, Lin TD (1996) Study on lunar cement production using hokkaido anorthite and hokkaido space development activities. In: Engineering, construction, and operations in space V. American Society of Civil Engineers, Albuquerque, New Mexico, United States, pp 621–629. https://​doi.​org/​10.​1061/​40177(207)86
  14. Isachenkov M, Chugunov S, Akhatov I, Shishkovsky I (2021) Regolith-based additive manufacturing for sustainable development of lunar infrastructure–an overview. Acta Astronaut 180:650–678View Article
  15. ISECG (2022) The global exploration roadmap—supplement October 2022. https://​www.​globalspaceexplo​ration.​org/​wp-content/​isecg/​GER_​Supplement_​Update_​2022.​pdf. Accessed 06 Jun 2023
  16. Jakus AE, Koube KD, Geisendorfer NR, Shah RN (2017) Robust and elastic lunar and martian structures from 3D-printed regolith inks. Sci Rep 7:1–8. https://​doi.​org/​10.​1038/​srep44931View Article
  17. Leonard RS, Johnson SW (1988) Sulfur-based construction materials for lunar construction. In: Engineering, construction, and operations in space, ASCE, pp 1295–1307
  18. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7(7–8):32–39. https://​doi.​org/​10.​1016/​S1369-7021(04)00344-XView Article
  19. Li S et al (2018) Direct evidence of surface exposed water ice in the lunar polar regions. Proc Natl Acad Sci 115(36):8907–8912. https://​doi.​org/​10.​1073/​pnas.​1802345115View Article
  20. Li J, Jia X, Yin L (2021) Hydrogel: diversity of structures and applications in food science. Food Rev Int 37(3):313–372. https://​doi.​org/​10.​1080/​87559129.​2020.​1858313View Article
  21. Lim S, Bowen J, Degli-Alessandrini G, Anand M, Cowley A, Levin Prabhu V (2021) Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci Rep 11(1):2133. https://​doi.​org/​10.​1038/​s41598-021-81691-w
  22. Lin TD (1985) Concrete for lunar base construction, 381p. https://​ui.​adsabs.​harvard.​edu/​abs/​1985lbsa.​conf.​.​381L. Accessed 13 May 2022
  23. Lin TD, Tseng L, Chou S (1996) Lunar concrete made with the dry-mix/steam-injection method. In: Engineering, construction, and operations in space V. American Society of Civil Engineers, Albuquerque, New Mexico, United States, pp 592–599. https://​doi.​org/​10.​1061/​40177(207)82.
  24. Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19. https://​doi.​org/​10.​1016/​j.​matdes.​2018.​03.​002View Article
  25. Meurisse A, Makaya A, Willsch C, Sperl M (2018) Solar 3D printing of lunar regolith. Acta Astronaut 152(September):800–810. https://​doi.​org/​10.​1016/​j.​actaastro.​2018.​06.​063View Article
  26. Montes C et al (2015) Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv Space Res 56(6):1212–1221. https://​doi.​org/​10.​1016/​j.​asr.​2015.​05.​044View Article
  27. Neves JM, Ramanathan S, Suraneni P, Grugel R, Radlińska A (2020) Characterization, mechanical properties, and microstructural development of lunar regolith simulant-portland cement blended mixtures. Constr Build Mater 258:120315. https://​doi.​org/​10.​1016/​j.​conbuildmat.​2020.​120315View Article
  28. Omar HA (1993) Production of lunar concrete using molten sulfur. NASA/CR-97-206028. https://​ntrs.​nasa.​gov/​citations/​19980001900. Accessed 12 May 2022
  29. Ordonez E et al (2017) Hypervelocity impact testing of materials for additive construction: applications on Earth, the Moon, and Mars. Procedia Eng 204:390–396. https://​doi.​org/​10.​1016/​j.​proeng.​2017.​09.​787View Article
  30. Osio-Norgaard J, Hayes AC, Whiting GL (2021) Sintering of 3D printable simulated lunar regolith magnesium oxychloride cements. Acta Astronaut 183:227–232. https://​doi.​org/​10.​1016/​j.​actaastro.​2021.​03.​016View Article
  31. Peng E, Zhang D, Ding J (2018) Ceramic robocasting: recent achievements, potential, and future developments. Adv Mater 30(47):1802404. https://​doi.​org/​10.​1002/​adma.​201802404View Article
  32. Perrot A, Rangeard D, Courteille E (2018) 3D printing of earth-based materials: processing aspects. Constr Build Mater 172:670–676. https://​doi.​org/​10.​1016/​j.​conbuildmat.​2018.​04.​017View Article
  33. Pilehvar S, Arnhof M, Pamies R, Valentini L, Kjøniksen AL (2020) Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J Clean Prod 247. https://​doi.​org/​10.​1016/​j.​jclepro.​2019.​119177
  34. Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) Robocasting of alumina hollow filament lattice structures. J Eur Ceram Soc 33(15–16):3243–3248. https://​doi.​org/​10.​1016/​j.​jeurceramsoc.​2013.​06.​001View Article
  35. Skjåk-Bræk G, Draget KI (2012) Alginates: properties and applications, vol 10. Elsevier B.V. https://​doi.​org/​10.​1016/​B978-0-444-53349-4.​00261-2
  36. Tang S, Yang L, Li G, Liu X, Fan Z (2019) 3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control. Addit Manuf 28(February):546–553. https://​doi.​org/​10.​1016/​j.​addma.​2019.​05.​034View Article
  37. Taylor SL et al (2018) Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronaut 143(September 2017):1–8. https://​doi.​org/​10.​1016/​j.​actaastro.​2017.​11.​005
  38. Toutanji HA, Evans S, Grugel RN (2012) Performance of lunar sulfur concrete in lunar environments. Constr Build Mater 29:444–448. https://​doi.​org/​10.​1016/​j.​conbuildmat.​2011.​10.​041View Article
  39. Toutanji H, Glenn-Loper B, Schrayshuen B (2005) Strength and durability performance of waterless lunar concrete. In: 43rd AIAA aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, Reno, Nevada. https://​doi.​org/​10.​2514/​6.​2005-1436
  40. Vaniman D, Pettit D, Heiken G (1992) Uses of lunar sulfur, 429p. https://​ui.​adsabs.​harvard.​edu/​abs/​1992lbsa.​conf.​.​429V. Accessed 12 May 2022
  41. Way JC, Silver PA, Howard RJ (2011) Sun-driven microbial synthesis of chemicals in space. Int J Astrobiol 10(4):359–364. https://​doi.​org/​10.​1017/​S147355041100021​8View Article
  42. Xu J et al (2019) 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders 1084208(February 2019):9. https://​doi.​org/​10.​1117/​12.​2505911
Metadaten
Titel
Direct Ink Writing with Lunar Regolith: An Avenue for Off-Earth Construction
verfasst von
T. Schild
A. Cowley
B. Grundström
N. Garrivier
N. Hensch
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-50081-7_5